70 resultados para SPLICING MUTATIONS

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Osteogenesis imperfecta is a heterogeneous genetic disorder characterized by bone fragility and deformity, recurrent fractures, blue sclera, short stature, and dentinogenesis imperfecta. Most cases are caused by mutations in COL1A1 and COL1A2 genes. We present a novel splicing mutation in the COL1A1 gene (c. 1875+ 1G>C) in a 16-year-old Brazilian boy diagnosed as a type III osteogenesis imperfecta patient. This splicing mutation and its association with clinical phenotypes will be submitted to the reference database of COL1A1 mutations, which has no other description of this mutation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Context: Mutations in TAC3 and TACR3 (encoding neurokinin B and its receptor) have been identified in Turkish patients with idiopathic hypogonadotropic hypogonadism (IHH), but broader populations have not yet been tested and genotype-phenotype correlations have not been established. Objective: A broad cohort of normosmic IHH probands was screened for mutations in TAC3/TACR3 to evaluate the prevalence of such mutations and define the genotype/phenotype relationships. Design and Setting: The study consisted of sequencing of TAC3/TACR3, in vitro functional assays, and neuroendocrine phenotyping conducted in tertiary care centers worldwide. Patients or Other Participants: 345 probands, 18 family members, and 292 controls were studied. Intervention: Reproductive phenotypes throughout reproductive life and before and after therapy were examined. Main Outcome Measure: Rare sequence variants in TAC3/TACR3 were detected. Results: In TACR3, 19 probands harbored 13 distinct coding sequence rare nucleotide variants [three nonsense mutations, six nonsynonymous, four synonymous (one predicted to affect splicing)]. In TAC3, one homozygous single base pair deletion was identified, resulting in complete loss of the neurokinin B decapeptide. Phenotypic information was available on 16 males and seven females with coding sequence variants in TACR3/TAC3. Of the 16 males, 15 had microphallus; none of the females had spontaneous thelarche. Seven of the 16 males and five of the seven females were assessed after discontinuation of therapy; six of the seven males and four of the five females demonstrated evidence for reversibility of their hypogonadotropism. Conclusions: Mutations in the neurokinin B pathway are relatively common as causes of hypogonadism. Although the neurokinin B pathway appears essential during early sexual development, its importance in sustaining the integrity of the hypothalamic-pituitary-gonadal axis appears attenuated over time. (J Clin Endocrinol Metab 95: 2857-2867, 2010)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present clinical and molecular evaluation from a large cohort of patients with Stickler syndrome: 78 individuals from 21 unrelated Brazilian families. The patients were selected in a Hospital with a craniofacial dysmorphology assistance service and clinical diagnosis was based on the presence of cleft palate associated to facial and ocular anomalies of Stickler syndrome. Analysis of COL2A1 gene revealed 9 novel and 4 previously described pathogenic mutations. Except for the mutation c.556G>T (p.Gly186X), all the others were located in the triple helical domain. We did not find genotype/phenotype correlation in relation to type and position of the mutation in the triple helical domain. However, a significantly higher proportion of myopia in patients with mutations located in this domain was observed in relation to those with the mutation in the non-tripe helical domain (c.556G>T; P < 0.04). A trend towards a higher prevalence of glaucoma, although not statistically significant, was observed in the presence of the mutation c.556G>T. It is possible. that this mutation alters the splicing of the mRNA instead of only creating a premature stop codon and therefore it can lead to protein products of different ocular effects. One novel DNA variation (c.1266+7G>C) occurs near a splice site and it was observed to co-segregate with the phenotype in one of the two families with this DNA variation. As in silico analysis predicted that the c.1266+7G>C DNA variation can affect the efficiency of the splicing, we still cannot rule it out as non-pathogenic. Our study also showed that ascertainment through cleft palate associated to other craniofacial signs can be very efficient for identification of Stickler syndrome patients. Still, high frequency of familial cases and high frequency of underdevelopment of distal lateral tibial epiphyses observed in our patients suggested that the inclusion of this information can improve the clinical diagnosis of Stickler syndrome. (C) 2008 Elsevier Masson SAS. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The gene SNRNP200 is composed of 45 exons and encodes a protein essential for pre-mRNA splicing, the 200 kDa helicase hBrr2. Two mutations in SNRNP200 have recently been associated with autosomal dominant retinitis pigmentosa (adRP), a retinal degenerative disease, in two families from China. In this work we analyzed the entire 35-Kb SNRNP200 genomic region in a cohort of 96 unrelated North American patients with adRP. To complete this large-scale sequencing project, we performed ultra high-throughput sequencing of pooled, untagged PCR products. We then validated the detected DNA changes by Sanger sequencing of individual samples from this cohort and from an additional one of 95 patients. One of the two previously known mutations (p.S1087L) was identified in 3 patients, while 4 new missense changes (p.R681C, p.R681H, p.V683L, p.Y689C) affecting highly conserved codons were identified in 6 unrelated individuals, indicating that the prevalence of SNRNP200-associated adRP is relatively high. We also took advantage of this research to evaluate the pool-and-sequence method, especially with respect to the generation of false positive and negative results. We conclude that, although this strategy can be adopted for rapid discovery of new disease-associated variants, it still requires extensive validation to be used in routine DNA screenings. (C) 2011 Wiley-Liss, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Thyroglobulin (Tg) is a large glycoprotein that is intimately involved in the biosynthesis of thyroxine and triiodothyronine. At least 38 mutations have been described in the Tg gene that are associated with varying degrees of hypothyroidism. We studied the Tg gene in four related subjects with congenital hypothyroidism. Summary: We found a novel compound heterozygous constellation (IVS30 + 1G>T/A2215D) in a brother and sister and one previously described related mutation (IVS30+1G>T) in their two sibling second degree cousins. The brother with the IVS30 + 1G>T/A2215D mutation and the two siblings with the IVS30+1G>T mutation had fetal or neonatal goiter and all had hypothyroidism. Conclusions: This study further confirms the association of the IVS30+1G>T mutation of the Tg gene with hypothyroidism. Computer analysis predicts that the A2215D mutation, first reported here, should cause structural instability of Tg but when present as a compound heterozygous mutation with IVS30+G>T/A its effect is unclear but is likely to be influenced by iodine intake.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Entry inhibitor is a new class of drugs that target the viral envelope protein. This region is variable; hence resistance to these drugs may be present before treatment. The aim of this study was to analyze the frequency of patients failing treatment with transcriptase reverse and protease inhibitors that would respond to the entry inhibitors Enfuvirtide, Maraviroc, and BMS-806. The study included 100 HIV-1 positive patients from one outpatient clinic in the city of Sao Paulo, for whom a genotype test was requested due to treatment failure. Proviral DNA was amplified and sequenced for regions of gp120 and gp41. A total of 80 could be sequenced and from those, 73 (91.3%), 5 (6.3%) and 2 (2.5%) were classified as subtype B, F, and recombinants (B/F and B/C), respectively. CXCR4 co-receptor use was predicted in 30% of the strains. Primary resistance to Enfuvirtide was found in 1.3%, following the AIDS Society consensus list, and 10% would be considered resistant if a broader criterion was used. Resistance to BMS-806 was higher; 6 (7.5%), and was associated to non-B strains. Strikingly, 27.5% of samples harbored one or more mutation among A316T, I323V, and S405A, which have been related to decreased susceptibility of Maraviroc; 15% of them among viruses predictive to be R5. A more common mutation was A316T, which was associated to the Brazilian B strain harboring the GWGR motif at the tip of V3 loop and their derivative sequences. These results may be impact guidelines for genotype testing and treatment in Brazil.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The identification of alternatively spliced transcripts has contributed to a better comprehension of developmental mechanisms, tissue-specific physiological processes and human diseases. Polymerase chain reaction amplification of alternatively spliced variants commonly leads to the formation of heteroduplexes as a result of base pairing involving exons common between the two variants. S1 nuclease cleaves single-stranded loops of heteroduplexes and also nicks the opposite DNA strand. In order to establish a strategy for mapping alternative splice-prone sites in the whole transcriptome, we developed a method combining the formation of heteroduplexes between 2 distinct splicing variants and S1 nuclease digestion. For 20 consensuses identified here using this methodology, 5 revealed a conserved splice site after inspection of the cDNA alignment against the human genome (exact splice sites). For 8 other consensuses, conserved splice sites were mapped at 2 to 30 bp from the border, called proximal splice sites; for the other 7 consensuses, conserved splice sites were mapped at 40 to 800 bp, called distal splice sites. These latter cases showed a nonspecific activity of S1 nuclease in digesting double-strand DNA. From the 20 consensuses identified here, 5 were selected for reverse transcription-polymerase chain reaction validation, confirming the splice sites. These data showed the potential of the strategy in mapping splice sites. However, the lack of specificity of the S1 nuclease enzyme is a significant obstacle that impedes the use of this strategy in large-scale studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Alternative splicing (AS) is a central mechanism in the generation of genomic complexity and is a major contributor to transcriptome and proteome diversity. Alterations of the splicing process can lead to deregulation of crucial cellular processes and have been associated with a large spectrum of human diseases. Cancer-associated transcripts are potential molecular markers and may contribute to the development of more accurate diagnostic and prognostic methods and also serve as therapeutic targets. Alternative splicing-enriched cDNA libraries have been used to explore the variability generated by alternative splicing. In this study, by combining the use of trapping heteroduplexes and RNA amplification, we developed a powerful approach that enables transcriptome-wide exploration of the AS repertoire for identifying AS variants associated with breast tumor cells modulated by ERBB2 (HER-2/neu) oncogene expression. Results: The human breast cell line (C5.2) and a pool of 5 ERBB2 over-expressing breast tumor samples were used independently for the construction of two AS-enriched libraries. In total, 2,048 partial cDNA sequences were obtained, revealing 214 alternative splicing sequence-enriched tags (ASSETs). A subset with 79 multiple exon ASSETs was compared to public databases and reported 138 different AS events. A high success rate of RT-PCR validation (94.5%) was obtained, and 2 novel AS events were identified. The influence of ERBB2-mediated expression on AS regulation was evaluated by capillary electrophoresis and probe-ligation approaches in two mammary cell lines (Hb4a and C5.2) expressing different levels of ERBB2. The relative expression balance between AS variants from 3 genes was differentially modulated by ERBB2 in this model system. Conclusions: In this study, we presented a method for exploring AS from any RNA source in a transcriptome-wide format, which can be directly easily adapted to next generation sequencers. We identified AS transcripts that were differently modulated by ERBB2-mediated expression and that can be tested as molecular markers for breast cancer. Such a methodology will be useful for completely deciphering the cancer cell transcriptome diversity resulting from AS and for finding more precise molecular markers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: To facilitate future diagnosis of Knobloch syndrome (KS) and better understand its etiology, we sought to identify not yet described COL18A1 mutations in KS patients. In addition, we tested whether mutations in this gene lead to absence of the COL18A1 gene product and attempted to better characterize the functional effect of a previously reported missense mutation. Methods: Direct sequencing of COL18A1 exons was performed in KS patients from four unrelated pedigrees. We used immunofluorescent histochemistry in skin biopsies to evaluate the presence of type XVIII collagen in four KS patients carrying two already described mutations: c. 3277C>T, a nonsense mutation, and c. 3601G>A, a missense mutation. Furthermore, we determined the binding properties of the mutated endostatin domain p.A1381T (c.3601G>A) to extracellular matrix proteins using ELISA and surface plasmon resonance assays. Results: We identified four novel mutations in COL18A1, including a large deletion involving exon 41. Skin biopsies from KS patients revealed lack of type XVIII collagen in epithelial basement membranes and blood vessels. We also found a reduced affinity of p.A1381T endostatin to some extracellular matrix components. Conclusions: COL18A1 mutations involved in Knobloch syndrome have a distribution bias toward the coding exons of the C-terminal end. Large deletions must also be considered when point mutations are not identified in patients with characteristic KS phenotype. We report, for the first time, lack of type XVIII collagen in KS patients by immunofluorescent histochemistry in skin biopsy samples. As a final point, we suggest the employment of this technique as a preliminary and complementary test for diagnosis of KS in cases when mutation screening either does not detect mutations or reveals mutations of uncertain effect, such as the p.A1381T change.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Exposure of cells to environmental stress conditions can lead to the interruption of several intracellular processes, in particular those performed by macromolecular complexes such as the spliceosome. Results: During nucleotide sequencing of cDNA libraries constructed using RNA isolated from B. emersonii cells submitted to heat shock and cadmium stress, a large number of ESTs with retained introns was observed. Among the 6,350 ESTs obtained through sequencing of stress cDNA libraries, 181 ESTs presented putative introns (2.9%), while sequencing of cDNA libraries from unstressed B. emersonii cells revealed only 0.2% of ESTs containing introns. These data indicate an enrichment of ESTs with introns in B. emersonii stress cDNA libraries. Among the 85 genes corresponding to the ESTs that retained introns, 19 showed more than one intron and three showed three introns, with intron length ranging from 55 to 333 nucleotides. Canonical splicing junctions were observed in most of these introns, junction sequences being very similar to those found in introns from genes previously characterized in B. emersonii, suggesting that inhibition of splicing during stress is apparently a random process. Confirming our observations, analyses of gpx3 and hsp70 mRNAs by Northern blot and S1 protection assays revealed a strong inhibition of intron splicing in cells submitted to cadmium stress. Conclusion: In conclusion, data indicate that environmental stresses, particularly cadmium treatment, inhibit intron processing in B. emersonii, revealing a new adaptive response to cellular exposure to this heavy metal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: p.C282Y mutation and rare variants in the HFE gene have been associated with hereditary hemochromatosis (HH). HH is also caused by mutations in other genes, such as the hemojuvelin (HJV), hepcidin (HAMP), transferrin receptor 2 (TFR2) and ferroportin (SLC40A1). The low rate homozygous p.C282Y mutation in Brazil is suggestive that mutations in non-HFE genes may be linked to HH phenotype. Aim: To screen exon-by-exon DNA sequences of HFE, HJV, HAMP, TFR2 and SLC40A1 genes to characterize the molecular basis of HH in a sample of the Brazilian population. Materials and methods: Fifty-one patients with primary iron overload (transferrin saturation >= 50% in females and >= 60% in males) were selected. Subsequent bidirectional DNA sequencing of HFE, HJV, HAMP, TFR2 and SLC40A1 exons was performed. Results: Thirty-seven (72.5%) out of the 51 patients presented at least one HFE mutation. The most frequent genotype associated with HH was the homozygous p.C282Y mutation (n = 11, 21.6%). In addition, heterozygous HFE p.S65C mutation was found in combination with p.H63D in two patients and homozygous HFE p.H63D was found in two patients as well. Sequencing in the HJV and HAMP genes revealed HJV p.E302K, HJV p.A310G, HJV p.G320V and HAMP p.R59G alterations. Molecular and clinical diagnosis of juvenile hemochromatosis (homozygous form for the HJV p.G320V) was described for the first time in Brazil. Three TFR2 polymorphisms (p.A75V, p.A617A and p.R752H) and six SLC40A1 polymorphisms (rs13008848, rs11568351, rs11568345, rs11568344, rs2304704, rs11568346) and the novel mutation SLC40A1 p.G204S were also found. Conclusions: The HE p.C282Y in homozygosity or in heterozygosity with p.H63D was the most frequent mutation associated with HH in this sample. The HJV p.E302K and HAMP p.R59G variants, and the novel SLC40A1 p.G2045 mutation may also be linked to primary iron overload but their role in the pathophysiology of HH remain to be elucidated. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rare HFE variants have been shown to be associated with hereditary hemochromatosis (HH), an iron overload disease. The low frequency of the HFE p.C282Y mutation in HH-affected Brazilian patients may suggest that other HFE-related mutations may also be implicated in the pathogenesis of HH in this population. The main aim was to screen for new HFE mutations in Brazilian individuals with primary iron overload and to investigate their relationship with HH. Fifty Brazilian patients with primary iron overload (transferrin saturation >50% in females and 60% in males) were selected. Subsequent bidirectional sequencing for each HFE exon was performed. The effect of HFE mutations on protein structure were analyzed by molecular dynamics simulation and free binding energy calculations. p.C282Y in homozygosis or in heterozygosis with p.H63D were the most frequent genotypic combinations associated with HH in our sample population (present in 17 individuals, 34%). Thirty-six (72.0%) out of the 50 individuals presented at least one HFE mutation. The most frequent genotype associated with HH was the homozygous p.C282Y mutation (n = 11, 22.0%). One novel mutation (p.V256I) was indentified in heterozygosis with the p.H63D mutation. In silico modeling analysis of protein behavior indicated that the p.V256I mutation does not reduce the binding affinity between HFE and beta 2-microglobulin ((beta 2M) in the same way the p.C282Y mutation does compared with the native HFE protein. In conclusion, screening of HFE through direct sequencing, as compared to p.C282Y/p.H63D genotyping, was not able to increase the molecular diagnosis yield of HH. The novel p.V256I mutation could not be implicated in the molecular basis of the HH phenotype, although its role cannot be completely excluded in HH-phenotype development. Our molecular modeling analysis can help in the analysis of novel, previously undescribed, HFE mutations. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Deficiencies of complement proteins of the classical pathway are strongly associated with the development of autoimmune diseases. Deficiency of Clr has been observed to occur concomitantly with deficiency in Cls and 9 out of 15 reported cases presented systemic lupus erythernatosus (SLE). Here, we describe a family in which all four children are deficient in Cls but only two of them developed SLE. Hemolytic activity mediated by the alternative and the lectin pathways were normal, but classical pathway activation was absent in all children`s sera. Cls was undetectable, while in the parents` sera it was lower than in the normal controls. The levels of Clr observed in the siblings and parents sera were lower than in the control, while the concentrations of other complement proteins (C3, C4, MBL and MASP-2) were normal in all family members. Impairment of Cls synthesis was observed in the patients` fibroblasts when analyzed by confocal microscopy. We show that all four siblings are homozygous for a mutation at position 938 in exon 6 of the Cls cDNA that creates a premature stop codon. Our investigations led us to reveal the presence of previously uncharacterized splice variants of Cls mRNA transcripts in normal human cells. These variants are derived from the skipping of exon 3 and from the use of an alternative 3` splice site within intron I which increases the size of exon 2 by 87 nucleotides. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sickle cell disease (SCD) is an inherited disorder caused by a single nucleotide substitution in the P-globin gene. The clinical heterogeneity observed in SCD patients has been attributed to environmental and genetic factors. The patients are subjected to increased oxidative stress, particularly during vaso-occlusive crises and acute chest pain. Another possible cause of oxidative stress in SCD is the high concentration of iron in the patients` plasma. The increase in oxidative stress could be a relevant risk factor for mutagenesis and carcinogenesis. Studies on the frequency of basal chromosomal aberrations in cultured lymphocytes from SCD patients have not been reported so far. In order to contribute to the understanding of the role of the different biomarkers and their relationship with the extremely variable clinical manifestation of SCD, we investigated the frequency of chromosome damage in peripheral lymphocytes from sickle cells patients and healthy controls. We found an increased frequency of chromosome damage and percentage of aberrant metaphases in these patients when compared with control subjects, even at basal values (p < 0.05). In the cytogenetic sensitivity assay, the results showed that these patients presented a marked decrease in the mitotic index values compared with healthy controls. Cisplatin-induced chromosomal damage in lymphocytes from these patients was significantly higher than the frequency measured in healthy controls. The results obtained in the present study showed that more investigations are needed in order to elucidate the susceptibility to genomic instability of SCD patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Context: Kisspeptin, encoded by the KISS1 gene, is a key stimulatory factor of GnRH secretion and puberty onset. Inactivating mutations of its receptor (KISS1R) cause isolated hypogonadotropic hypogonadism (IHH). A unique KISS1R-activating mutation was described in central precocious puberty (CPP). Objective: Our objective was to investigate KISS1 mutations in patients with idiopathic CPP and normosmic IHH. Patients: Eighty-three children with CPP (77 girls) and 61 patients with IHH (40 men) were studied. The control group consisted of 200 individuals with normal pubertal development. Methods: The promoter region and the three exons of KISS1 were amplified and sequenced. Cells expressing KISS1R were stimulated with synthetic human wild-type or mutant kisspeptin-54 (kp54), and inositol phosphate accumulation was measured. In a second set of experiments, kp54 was preincubated in human serum before stimulation of the cells. Results: Two novel KISS1 missense mutations, p.P74S and p.H90D, were identified in three unrelated children with idiopathic CPP. Both mutations were absent in 400 control alleles. The p.P74S mutation was identified in the heterozygous state in a boy who developed CPP at 1 yr of age. The p.H90D mutation was identified in the homozygous state in two unrelated girls with CPP. In vitro studies revealed that the capacity of the P74S and H90D mutants to stimulate IP production was similar to the wild type. After preincubation of wild-type and mutant kp54 in human serum, the capacity to stimulate signal transduction was significantly greater for P74S compared with the wild type, suggesting that the p.P74S variant is more stable. Only polymorphisms were found in the IHH group. Conclusion: Two KISS1 mutations were identified in unrelated patients with idiopathic CPP. The p.P74S variant was associated with higher kisspeptin resistance to degradation in comparison with the wild type, suggesting a role for this mutation in the precocious puberty phenotype. (J Clin Endocrinol Metab 95: 2276-2280, 2010)