46 resultados para SOMATOSENSORY-EVOKED-POTENTIALS
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Study design: Cross-sectional study. Objectives: To observe if there is a relationship between the level of injury by the American Spinal Cord Injury Association (ASIA) and cortical somatosensory evoked potential (SSEP) recordings of the median nerve in patients with quadriplegia. Setting: Rehabilitation Outpatient Clinic at the university hospital in Brazil. Methods: Fourteen individuals with quadriplegia and 8 healthy individuals were evaluated. Electrophysiological assessment of the median nerve was performed by evoked potential equipment. The injury level was obtained by ASIA. N(9), N(13) and N(20) were analyzed based on the presence or absence of responses. The parameters used for analyzing these responses were the latency and the amplitude. Data were analyzed using mixed-effect models. Results: N(9) responses were found in all patients with quadriplegia with a similar latency and amplitude observed in healthy individuals; N(13) responses were not found in any patients with quadriplegia. N(20) responses were not found in C5 patients with quadriplegia but it was present in C6 and C7 patients. Their latencies were similar to healthy individuals (P > 0.05) but the amplitudes were decreased (P < 0.05). Conclusion: This study suggests that the SSEP responses depend on the injury level, considering that the individuals with C6 and C7 injury levels, both complete and incomplete, presented SSEP recordings in the cortical area. It also showed a relationship between the level of spinal cord injury assessed by ASIA and the median nerve SSEP responses, through the latency and amplitude recordings. Spinal Cord (2009) 47, 372-378; doi:10.1038/sc.2008.147; published online 20 January 2009
Resumo:
Study design: A prospective, non-randomized clinical series trial. Objective: To evaluate the effect of autogenous undifferentiated stem cell infusion for the treatment of patients with chronic spinal cord injury (SCI) on somatosensory evoked potentials (SSEPs). Setting: A public tertiary hospital in Sao Paulo, Brazil. Methods: Thirty-nine consecutive patients with diagnosed complete cervical and thoracic SCI for at least 2 years and with no cortical response in the SSEP study of the lower limbs were included in the trial. The trial patients underwent peripheral blood stem cell mobilization and collection. The stem cell concentrate was cryopreserved and reinfused through arteriography into the donor patient. The patients were followed up for 2.5 years and submitted to SSEP studies to evaluate the improvement in SSEPs after undifferentiated cell infusion. Results: Twenty-six (66.7%) patients showed recovery of somatosensory evoked response to peripheral stimuli after 2.5 years of follow-up. Conclusion: The 2.5-year trial protocol proved to be safe and improved SSEPs in patients with complete SCI. Sponsorship: None. Spinal Cord (2009) 47, 733-738; doi: 10.1038/sc.2009.24; published online 31 March 2009
Resumo:
Long latency auditory evoked potentials (LLAEP) alterations in individuals with tinnitus are suggestive of dysfunction in the central auditory pathways at a cortical level. Aim: to characterize the LLAEP in individuals with and without tinnitus exposed to occupational noise. Method: Cross-sectional contemporary cohort, prospective study. Sixty subjects exposed to occupational noise, ranging in age from 29 to 50 years underwent LLAEP assessment; 30 of them had tinnitus complaint and 30 did not have tinnitus. Results: we observed significant statistical difference regarding the mean values of latencies of waves N1 (p<0.001), P2 (p=0.002) and P300 (p=0.039) when we compared individuals with and without tinnitus. In individuals with tinnitus we also noticed a greater number of altered results concerning components N1 (60%) and P2 (66.7%), although only component P2 presented significant statistical difference (p=0.010). For the LLAEP, the latency increase was the only type of alteration found (p=1.000). We found a greater association between bilateral tinnitus and bilateral alteration for all components N1(73%), P2(73%) and P300(50%). Conclusion: It is relevant to study LLAEP in individuals with tinnitus exposed to high occupational sound pressure levels.
Resumo:
Motor unit action potentials (MUAPs) evoked by repetitive, low-intensity transcranial magnetic stimulation can be modeled as a Poisson process. A mathematical consequence of such a model is that the ratio of the variance to the mean of the amplitudes of motor evoked potentials (MEPs) should provide an estimate of the mean size of the individual MUAPs that summate to generate each MEP. We found that this is, in fact, the case. Our finding thus supports the use of the Poisson distribution to model MEP generation and indicates that this model enables characterization of the motor unit population that contributes to near-threshold MEPs. Muscle Nerve 42: 825-828, 2010
Resumo:
The clubfoot is one of the most common congenital deformities affecting the lower limbs, it still presents controversial aspects regarding etiology and treatment. In spite of its relatively high frequency, the treatment is still challenging, since the long-term aim is achieving an everlasting flexible, plantigrade, pain-free and totally functional foot. The Ponseti method has gained attention and popularity because of its satisfactory results and surgery avoidance. Presently, surgical treatment is indicated only after failure of conservative methods, avoiding extensive soft-tissue release, but performing localized corrections of the deformities, a technique also know as ""a la carte"" release. The future perspective is based on the knowledge about long-term results and new understanding of the clubfoot etiology, especially in the genetic field, which may eventually be helpful for prognostic and treatment. Level of Evidence: Level II, systematic review.
Resumo:
Positron emission tomography studies during speech have indicated a failure to show the normal activation of auditory cortical areas in stuttering individuals. In the present study, P300 event-related potentials were used to investigate possible effects of behavioral treatment on the pattern of signal amplitude and latency between waves. In order to compare variations in P300 measurements, a control group paired by age and gender to the group of stutterers, was included in the study. Findings suggest that the group of stutterers presented a significant decrease in stuttering severity after the fluency treatment program. Regarding P300 measurements, stutterers and their controls presented results within normal limits in all testing situations and no significant statistical variations between pre and post treatment testing. When comparing individual results between the testing situations, stutterers presented a higher average decrease in wave latency for the right ear following treatment. The results are discussed in light of previous P300 event-related potentials and functional imaging studies with stuttering adults. Educational objectives: The reader will learn about and be able to describe the: (1) use of P300 event-related potentials in the study of stuttering; (2) differences between stuttering and non-stuttering adults; and (3) effects of behavioral fluency treatment on cerebral activity in stuttering speakers. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
There is no consensus on the relevance of factors that influence gender differences in the behavior of muscles. Some studies have reported a relationship between muscle tension and amplitude of the vestibular evoked myogenic potential; others, that results depend on which muscles are studied or on how much load is applied. Aims: This study aims to compare vestibular evoked myogenic potential parameters between genders in young individuals. Methods: Eighty young adults were selected - 40 men and 40 women. Stimuli were averaged tone-bursts at 500 Hz, 90 dBHL intensity, and a 10-1000 Hz bandpass filter with amplification of 10-25 microvolts per division. The recordings were made in 80 ms windows. Study type: An experimental and prospective study. Results: No significant gender differences were found in wave latency - p = 0.19 and p = 0.50 for waves P13 and N23, respectively. No differences were found in amplitude values - p = 0.28 p = 0.40 for waves P13 and N23, respectively. Conclusion: There were no gender differences in latency and amplitude factors; the sternocleidomastoid muscle strain was monitored during the examination.
Resumo:
The inferior colliculus (IC) is primarily involved in the processing of auditory information, but it is distinguished from other auditory nuclei in the brainstem by its connections with structures of the motor system. Functional evidence relating the IC to motor behavior derives from experiments showing that activation of the IC by electrical stimulation or excitatory amino acid microinjection causes freezing, escape-like behavior, and immobility. However, the nature of this immobility is still unclear. The present study examined the influence of excitatory amino acid-mediated mechanisms in the IC on the catalepsy induced by the dopamine receptor blocker haloperidol administered systemically (1 or 0.5 mg/kg) in rats. Haloperidol-induced catalepsy was challenged with prior intracollicular microinjections of glutamate NMDA receptor antagonists, MK-801 (15 or 30 mmol/0.5 mu l) and AP7 (10 or 20 nmol/0.5 mu l), or of the NMDA receptor agonist N-methyl-D-aspartate (NMDA, 20 or 30 nmol/0.5 mu l). The results showed that intracollicular microinjection of MK-801 and AP7 previous to systemic injections of haloperidol significantly attenuated the catalepsy, as indicated by a reduced latency to step down from a horizontal bar. Accordingly, intracollicular microinjection of NMDA increased the latency to step down the bar. These findings suggest that glutamate-mediated mechanisms in the neural circuits at the IC level influence haloperidol-induced catalepsy and participate in the regulation of motor activity. (C) 2010 Published by Elsevier B.V.
Resumo:
Electrical or chemical stimulation of the inferior colliculus (IC) induces fear-like behaviors. More recently, consistent evidence has shown that electrical stimulation of the central nucleus of the IC supports Pavlovian conditioning and latent inhibition (Li). LI is characterized by retardation in conditioning and also by an impaired ability to ignore irrelevant stimuli, after a non-reinforced pre-exposure to the conditioned stimulus. LI has been proposed as a behavioral model of cognitive abnormalities seen in schizophrenia. The aim of the present study was to determine whether dopaminergic mechanisms in the IC are involved in LI of the conditioned emotional response (CER). To induce LI, a group of rats was pre-exposed (PE) to six tones in two sessions, while rats that were not pre-exposed (NPE) had two sessions without tone presentations. The conditioning consisted of two tone presentations to the animal, followed immediately by a foot shock. PE and NPE rats received IC microinjections of physiological saline, the dopaminergic agonist apomorphine (9.0 mu g/0.5 mu L/side), or the dopaminergic antagonist haloperidol (0.5 mu g/0.5 mu L/side) before both pre-exposure and conditioning. During the test, the PE rats that received saline or haloperidol had a lower suppression of the licking response compared to NPE rats that received vehicle or haloperidol, indicating that latent inhibition was induced. There was no significant difference in the suppression ratio in rats that received apomorphine injections into the IC, indicating reduced latent inhibition. These results suggest that dopamine-mediated mechanisms of the IC are involved in the development of LI. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
The inferior colliculus (IC) is primarily involved in the processing of acoustic stimuli, being in a position to send auditory information to motor centers that participate in behaviors such as prey catching and predators` avoidance The role of the central nucleus of the IC (CIC) on fear and anxiety has been suggested on the basis that rats are able to engage in tasks to decrease the aversiveness of CIC stimulation, increased Fos immunolabeling during diverse aversive states and increased CIC auditory evoked potentials (AEP) induced by conditioned fear stimuli Additionally it was shown that brainstem AEP, represented by wave V, for which the main generator is the IC, is increased during experimentally induced anxiety Rats segregated according to their low or high emotional reactivity have been used as an important tool in the study of fear and anxiety The IC contains a high density of GABA receptors Since the efficacy of an anxiolytic compound is a function of the animal`s anxiety level, it is possible that GABA-benzodiazepine (Bzp) agents affect LA and HA animals differently In this study we investigated the GABA-Bzp influence on the modulation of AEP in rats with low (LA) or high-anxiety (HA) levels, as assessed by the elevated plus maze test (EPM) GABA-Bzp modulation on the unconditioned AEP response was analyzed by using intra CIC injections (0 2 mu l) of the GABA-Bzp agonists muscimol (121 ng) and diazepam (30 mu g) or the GABA inhibitors bicuculline (10 ng) and semicarbazide (7 mu g) In a second experiment, we evaluate the effects of contextual aversive conditioning on AEP using foot shocks as unconditioned stimuli On the unconditioned fear paradigm GABA inhibition in creased AEP in LA rats and decreases this measure in HA counterparts Muscimol was effective in reducing AEP in both LA and HA rats Contextual fear stimuli increased the magnitude of AEP In spite of no effect obtained with diazepam in LA rats the drug inhibited AEP in HA animals The specificity of the regulatory mechanisms mediated by GABA Bzp for the ascending neurocircuits responsible for the acquisition of aversive information in LA and HA animals shed light on the processing of sensory information underlying the generation of defensive reactions (C) 2010 IBRO Published by Elsevier Ltd All rights reserved
Resumo:
Rats with a bilateral neonatal ventral hippocampus lesion (NVHL) are used as models of neurobiological aspects of schizophrenia. In view of their decreased number of GABAergic interneurons, we hypothesized that they would show increased reactivity to acoustic stimuli. We systematically characterized the acoustic reactivity of NVHL rats and sham operated controls. They were behaviourally observed during a loud white noise. A first cohort of 7 months` old rats was studied. Then the observations were reproduced in a second cohort of the same age after characterizing the reactivity of the same rats to dopaminergic drugs. A third cohort of rats was studied at 2, 3, 4, 5 and 6 months. In subsets of lesioned and control rats, inferior colliculus auditory evoked potentials were recorded. A significant proportion of rats (50-62%) showed aberrant audiogenic responses with explosive wild running resembling the initial phase of audiogenic seizures. This was not correlated with their well-known enhanced reactivity to dopaminergic drugs. The proportion of rats showing this strong reaction increased with rats` age. After the cessation of the noise, NVHL rats showed a long freezing period that did neither depend on the size of the lesion nor on the rats` age. The initial negative deflection of the auditory evoked potential was enhanced in the inferior colliculus of only NVHL rats that displayed wild running. Complementary anatomical investigations using X-ray scans in the living animal, and alizarin red staining of brain slices, revealed a thin layer of calcium deposit close to the medial geniculate nuclei in post-NVHL rats, raising the possibility that this may contribute to the hyper-reactivity to sounds seen in these animals. The findings of this study provide complementary information with potential relevance for the hyper-reactivity noted in patients with schizophrenia, and therefore a tool to investigate the underlying biology of this endophenotype. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Some patients are no longer able to communicate effectively or even interact with the outside world in ways that most of us take for granted. In the most severe cases, tetraplegic or post-stroke patients are literally `locked in` their bodies, unable to exert any motor control after, for example, a spinal cord injury or a brainstem stroke, requiring alternative methods of communication and control. But we suggest that, in the near future, their brains may offer them a way out. Non-invasive electroencephalogram (EEG)-based brain-computer interfaces (BCD can be characterized by the technique used to measure brain activity and by the way that different brain signals are translated into commands that control an effector (e.g., controlling a computer cursor for word processing and accessing the internet). This review focuses on the basic concepts of EEG-based BC!, the main advances in communication, motor control restoration and the down-regulation of cortical activity, and the mirror neuron system (MNS) in the context of BCI. The latter appears to be relevant for clinical applications in the coming years, particularly for severely limited patients. Hypothetically, MNS could provide a robust way to map neural activity to behavior, representing the high-level information about goals and intentions of these patients. Non-invasive EEG-based BCIs allow brain-derived communication in patients with amyotrophic lateral sclerosis and motor control restoration in patients after spinal cord injury and stroke. Epilepsy and attention deficit and hyperactive disorder patients were able to down-regulate their cortical activity. Given the rapid progression of EEG-based BCI research over the last few years and the swift ascent of computer processing speeds and signal analysis techniques, we suggest that emerging ideas (e.g., MNS in the context of BC!) related to clinical neuro-rehabilitation of severely limited patients will generate viable clinical applications in the near future.
Resumo:
There is not a specific test to diagnose Alzheimer`s disease (AD). Its diagnosis should be based upon clinical history, neuropsychological and laboratory tests, neuroimaging and electroencephalography (EEG). Therefore, new approaches are necessary to enable earlier and more accurate diagnosis and to follow treatment results. In this study we used a Machine Learning (ML) technique, named Support Vector Machine (SVM), to search patterns in EEG epochs to differentiate AD patients from controls. As a result, we developed a quantitative EEG (qEEG) processing method for automatic differentiation of patients with AD from normal individuals, as a complement to the diagnosis of probable dementia. We studied EEGs from 19 normal subjects (14 females/5 males, mean age 71.6 years) and 16 probable mild to moderate symptoms AD patients (14 females/2 males, mean age 73.4 years. The results obtained from analysis of EEG epochs were accuracy 79.9% and sensitivity 83.2%. The analysis considering the diagnosis of each individual patient reached 87.0% accuracy and 91.7% sensitivity.
Resumo:
Purpose: We evaluated the somatic and autonomic innervation of the pelvic floor and rhabdosphincter before and after nerve sparing radical retropubic prostatectomy using neurophysiological tests and correlated findings with clinical parameters and urinary continence. Materials and Methods: From February 2003 to October 2005, 46 patients with prostate cancer were enrolled in a controlled, prospective study. Patients were evaluated before and 6 months after nerve sparing radical retropubic prostatectomy using the UCLA-PCI urinary function domain and neurophysiological tests, including somatosensory evoked potential, and the pudendo-urethral, pudendo-anal and urethro-anal reflexes. Clinical parameters and urinary continence were correlated with afferent and efferent innervation of the membranous urethra and pelvic floor. We used strict criteria to define urinary continence as complete dryness with no leakage at all, not requiring any pads or diapers and with a UCLA-PCI score of 500. Patients with a sporadic drop of leakage, requiring up to 1 pad daily, were defined as having occasional urinary leakage. Results: Two patients were excluded from study due to urethral stricture postoperatively. We evaluated 44 patients within 6 months after surgery. The pudendo-anal and pudendo-urethral reflexes were unchanged postoperatively (p = 0.93 and 0.09, respectively), demonstrating that afferent and efferent pudendal innervation to this pelvic region was not affected by the surgery. Autonomic afferent denervation of the membranous urethral mucosa was found in 34 patients (77.3%), as demonstrated by a postoperative increase in the urethro-anal reflex sensory threshold and urethro-anal reflex latency (p<0.001 and 0.0007, respectively). Six of the 44 patients used pads. One patient with more severe leakage required 3 pads daily and 23 showed urinary leakage, including 5 who needed 1 pad per day and 18 who did not wear pads. Afferent autonomic denervation at the membranous urethral mucosa was found in 91.7% of patients with urinary leakage. Of 10 patients with preserved urethro-anal reflex latency 80% were continent. Conclusions: Sensory and motor pudendal innervation to this specific pelvic region did not change after nerve sparing radical retropubic prostatectomy. Significant autonomic afferent denervation of the membranous urethral mucosa was present in most patients postoperatively. Impaired membranous urethral sensitivity seemed to be associated with urinary incontinence, particularly in patients with occasional urinary leakage. Damage to the afferent autonomic innervation may have a role in the continence mechanism after nerve sparing radical retropubic prostatectomy.
Resumo:
Among nonmotor symptoms observed in Parkinson`s disease (PD) dysfunction in the visual system, including hallucinations, has a significant impact in their quality of life. To further explore the visual system in PD patients we designed two fMRI experiments comparing 18 healthy volunteers with 16 PD patients without visual complaints in two visual fMRI paradigms: the flickering checkerboard task and a facial perception paradigm. PD patients displayed a decreased activity in the primary visual cortex (Broadmann area 17) bilaterally as compared to healthy volunteers during flickering checkerboard task and increased activity in fusiform gyms (Broadmann area 37) during facial perception paradigm. Our findings confirm the notion that PD patients show significant changes in the visual cortex system even before the visual symptoms are clinically evident. Further studies are necessary to evaluate the contribution of these abnormalities to the development visual symptoms in PD. (C) 2010 Movement Disorder Society