124 resultados para SOIL NEMATODE COMMUNITY
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Agricultural reuse of treated sewage effluent (TSE) is an environmental and economic practice; however, little is known about its effects on the characteristics and microbial function in tropical soils. The effect of surplus irrigation of a pasture with TSE, in a period of 18 months, was investigated, considering the effect of 0% surplus irrigation with TSE as a control. In addition, the experiment consisted of three surplus treatments (25%, 50%, and 100% excess) and a nonirrigated pasture area (SE) to compare the soil microbial community level physiological profiles, using the Biolog method. The TSE application increased the average substrate consumption of the soil microbial community, based on the kinetic parameters of the average well color development curve fitting. There were no significant differences between the levels of surplus irrigation treatments. Surplus TSE pasture irrigation caused minor increases in the physiological status of the soil microbial community but no detectable damage to the pasture or soil.
Resumo:
The Fungal Ribosomal Intergenic Spacer Analysis (F-RISA) was used to characterize soil fungal communities from three ecosystems of Araucaria angustifolia from Brazil: a native forest and two replanted forest ecosystems, one of them with a past history of wildfire. The arbuscular mycorrhizal fungi (AMF) infection was evaluated in Araucaria roots of 18-month-old axenic plants previously inoculated with soils collected from those areas in a greenhouse experiment. The principal component analysis of F-RISA profiles showed different soil fungal community between the three studied areas. Sixty three percent of F-RISA fragments amplified in the soil and the substrate samples presented lengths between 500 and 700 bp. The number of Operational Taxonomic Units (OTUs) was 34 for soil and 38 for substrate, however, more fragments were detected in soil (214) than in substrate (163). An in silico F-RISA analysis to compare our data with ITS1-5.8S-ITS2 sequences from NCBI database showed the presence of Ascomycota, Basidiomycota and Glomeromycota among the soil and substrate fungal communities. AMF infection was higher in plants inoculated with soil from the native forest and the replanted forest with wildfire, both presenting similar chemical characteristics but with different disturbance levels. These results indicate that soil chemical composition may influence the soil fungal community structures rather than the anthropogenic or fire disturbances.
Resumo:
The role of dominant bacterial groups in the plant rhizosphere, e.g., those belonging to the phyla Acidobacteria and Verrucomicrobia, has, so far, not been elucidated, and this is mainly due to the lack of culturable representatives. This study aimed to isolate hitherto-uncultured bacteria from the potato rhizosphere by a combination of cultivation approaches. An agar medium low in carbon availability (oligotrophic agar medium) and either amended with potato root exudates or catalase or left unamended was used with the aim to improve the culturability of bacteria from the potato rhizosphere. The colony forming unit numbers based on colonies and microcolonies were compared with microscopically determined fluorescence-stained cell numbers. Taxonomical diversity of the colonies was compared with that of library clones made from rhizosphere DNA, on the basis of 16S rRNA gene comparisons. The oligotrophic media amended or not with catalase or rhizosphere extract recovered up to 33.6% of the total bacterial numbers, at least seven times more than the recovery observed on R2A. Four hitherto-uncultured Verrucomicrobia subdivision 1 representatives were recovered on agar, but representatives of this group were not found in the clone library. The use of oligotrophic medium and its modifications enabled the growth of colony numbers, exceeding those on classical agar media. Also, it led to the isolation of hitherto-uncultured bacteria from the potato rhizosphere. Further improvement in cultivation will certainly result in the recovery of other as-yet-unexplored bacteria from the rhizosphere, making these groups accessible for further investigation, e.g., with respect to their possible interactions with plants.
Resumo:
Pseudomonas putida strain P9 is a novel competent endophyte from potato. P9 causes cultivar-dependent suppression of Phytophthora infestans. Colonization of the rhizoplane and endosphere of potato plants by P9 and its rifampin-resistant derivative P9R was studied. The purposes of this work were to follow the fate of P9 inside growing potato plants and to establish its effect on associated microbial communities. The effects of P9 and P9R inoculation were studied in two separate experiments. The roots of transplants of three different cultivars of potato were dipped in suspensions of P9 or P9R cells, and the plants were planted in soil. The fate of both strains was followed by examining colony growth and by performing PCR-denaturing gradient gel electrophoresis (PCR-DGGE). Colonies of both strains were recovered from rhizoplane and endosphere samples of all three cultivars at two growth stages. A conspicuous band, representing P9 and P9R, was found in all Pseudomonas PCR-DGGE fingerprints for treated plants. The numbers of P9R CFU and the P9R-specific band intensities for the different replicate samples were positively correlated, as determined by linear regression analysis. The effects of plant growth stage, genotype, and the presence of P9R on associated microbial communities were examined by multivariate and unweighted-pair group method with arithmetic mean cluster analyses of PCR-DGGE fingerprints. The presence of strain P9R had an effect on bacterial groups identified as Pseudomonas azotoformans, Pseudomonas veronii, and Pseudomonas syringae. In conclusion, strain P9 is an avid colonizer of potato plants, competing with microbial populations indigenous to the potato phytosphere. Bacterization with a biocontrol agent has an important and previously unexplored effect on plant-associated communities.
Resumo:
The assessment of bacterial communities in soil gives insight into microbial behavior under prevailing environmental conditions. In this context, we assessed the composition of soil bacterial communities in a Brazilian sugarcane experimental field. The experimental design encompassed plots containing common sugarcane (variety SP80-1842) and its transgenic form (IMI-1 - imazapyr herbicide resistant). Plants were grown in such field plots in a completely randomized design with three treatments, which addressed the factors transgene and imazapyr herbicide application. Soil samples were taken at three developmental stages during plant growth and analyzed using 16S ribosomal RNA (rRNA)-based PCR-denaturing gradient gel electrophoresis (PCR-DGGE) and clone libraries. PCR-DGGE fingerprints obtained for the total bacterial community and specific bacterial groups - Actinobacteria, Alphaproteobacteria and Betaproteobacteria - revealed that the structure of these assemblages did not differ over time and among treatments. Nevertheless, slight differences among 16S rRNA gene clone libraries constructed from each treatment could be observed at particular cut-off levels. Altogether, the libraries encompassed a total of eleven bacterial phyla and the candidate divisions TM7 and OP10. Clone sequences affiliated with the Proteobacteria, Actinobacteria, Firmicutes and Acidobacteria were, in this order, most abundant. Accurate phylogenetic analyses were performed for the phyla Acidobacteria and Verrucomicrobia, revealing the structures of these groups, which are still poorly understood as to their importance for soil functioning and sustainability under agricultural practices.
Resumo:
The impact of large food falls and carrion on meiobenthic communities remains little understood. The objective of the present study was to investigate whether the carcass of a stingray, encountered fortuitously in an Australian estuary, affects the underlying meiobenthic community, in particular nematode assemblages. The integrity of the skeleton and the low redox values observed under the carcass suggest that the cadaver had been slowly and chiefly decomposed by microbes. The abundance and number of meiofaunal taxa, as well as nematode abundance and nematode-species richness, were significantly lower under the carcass when compared to samples outside the carcass. Nonetheless, a few nematode species, typical of hypoxic/anoxic sediments, were more abundant under the carcass. Interestingly, all these species were absent or rare in samples near, but not under, the carcass, suggesting that they may take advantage of the reduced environment created by the carcass and the consequent lack of competition to prosper. As observed for other marine environments, carcasses in estuaries create a microhabitat that supports a characteristic meiobenthic fauna, distinct from those inhabiting the surrounding sediments, but similar to those of reduced habitats.
Resumo:
(Impact of seedling removal on regenerating community structure of a seasonal semideciduous forest). Transplanting seedlings and saplings from natural forests has been considered an alternative to producing saplings of native species for forest restoration purposes, but the possible impact of this procedure on plant community regeneration has not been investigated. This work evaluates the impact of different treatments of shrub and tree-seedling (up to 30 cm) removal from a seasonal semideciduous forest fragment located in southeastern Brazil on the natural regeneration process. Eighty 2x2 m plots were installed in two habitats (forest edge and interior) and submitted to four seedling-removal treatments (I, II - 100% removal with or without soil mixing; III - 50% removal without soil mixing: and IV - control treatment Without seedling removal). Regeneration density and richness were evaluated before treatment as well as 6, 12 and 18 months later. The results were compared among treatments for each evaluation period and among periods within treatments. There were similarities between edge and interior. The natural regeneration process did not improve with soil mixing. Plots submitted to seedling removal partially recovered plant density; however, these plots had lower species richness when compared to the control and to the initial values before treatment. Seedling removal has a negative impact on the regeneration process of low-density species, thus the use of natural regeneration as a sapling source for forest restoration purposes should focus only on high-density species with well-known regeneration strategies and not on the community as a whole.
Resumo:
The rhizosphere is a niche exploited by a wide variety of bacteria. The expression of heterologous genes by plants might become a factor affecting the structure of bacterial communities in the rhizosphere. In a greenhouse experiment, the bacterial community associated to transgenic eucalyptus, carrying the Lhcb1-2 genes from pea (responsible for a higher photosynthetic capacity), was evaluated. The culturable bacterial community associated to transgenic and wild type plants were not different in density, and the Amplified Ribosomal DNA Restriction Analysis (ARDRA) typing of 124 strains revealed dominant ribotypes representing the bacterial orders Burkholderiales, Rhizobiales, and Actinomycetales, the families Xanthomonadaceae, and Bacillaceae, and the genus Mycobacterium. Principal Component Analysis based on the fingerprints obtained by culture-independent Denaturing Gradient Gel Electrophoresis analysis revealed that Alphaproteobacteria, Betaproteobacteria and Actinobacteria communities responded differently to plant genotypes. Similar effects for the cultivation of transgenic eucalyptus to those observed when two genotype-distinct wild type plants are compared.
Resumo:
The controlled disposal of tannery sludge in agricultural soils is a viable alternative for recycling such waste; however, the impact of this practice on the arbuscular mycorrhizal fungi (AMF) communities is not well understood. We studied the effects of low-chromium tannery sludge amendment in soils on AMF spore density, species richness and diversity, and root colonization levels. Sludge was applied at four doses to an agricultural field in Rolandia, Parana state, Brazil. The sludge was left undisturbed on the soil surface and then the area was harrowed and planted with corn. The soil was sampled at four intervals and corn roots once within a year (2007/2008). AMF spore density was low (1 to 49 spores per 50 cm(3) of soil) and decreased as doses of tannery sludge increased. AMF root colonization was high (64%) and unaffected by tannery sludge. Eighteen AMF species belonging to six genera (Acaulospora, Glomus, Gigaspora, Scutellospora, Paraglomus, and Ambispora) were recorded. At the sludge doses of 9.0 and 22.6 Mg ha(-1), we observed a decrease in AMF species richness and diversity, and changes in their relative frequencies. Hierarchical grouping analysis showed that adding tannery waste to the soil altered AMF spore community in relation to the control, modifying the mycorrhizal status of soil and selectively favoring the sporulation of certain species.
Resumo:
The application of tannery sludge to soils is a form of recycling; however, few studies have examined the impacts of this practice on soil microbial properties. We studied effects of two applications (2006 and 2007) of tannery sludge (with a low chromium content) on the structure of the bacterial community and on the microbial activity of soils. We fertilized an agricultural area in Rolandia, Parana state, Brazil with different doses of sludge based on total N content, which ranged from 0 to 1200 kg N ha(-1). Sludge remained on the soil surface for three months before being plowed. Soils were sampled seven times during the experiment. Bacterial community structure, assessed by denaturing gradient gel electrophoresis (DGGE), was modified by the application of tannery sludge. Soon after the first application, there was clear separation between the bacterial communities in different treatments, such that each dose of sludge was associated with a specific community. These differences remained until 300 days after application and also after the second sludge application, but 666 days after the beginning of the experiment no differences were found in the bacterial communities of the lowest doses and the control. The principal response curve (PRC) analysis showed that the first sludge application strongly stimulated biological activity even 300 days after application. The second application also stimulated activity, but at a lower magnitude and for a shorter time, given that 260 days after the second application there was no difference in biological activity among treatments. PRC also showed that the properties most influenced by the application of tannery sludge were enzymatic activities related to N cycling (asparaginase and urease). The redundancy analysis (RDA) showed that tannery sludge`s influence on microbial activity is mainly related to increases in inorganic N and soil pH. Results showed that changes in the structure of the bacterial community in the studied soils were directly related to changes of their biological activity. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The effects of drying and rewetting (DRW) have been studied extensively in non-saline soils, but little is known about the impact of DRW in saline soils. An incubation experiment was conducted to determine the impact of 1-3 drying and re-wetting events on soil microbial activity and community composition at different levels of electrical conductivity in the saturated soil extract (ECe) (ECe 0.7, 9.3, 17.6 dS m(-1)). A non-saline sandy loam was amended with NaCl to achieve the three EC levels 21 days prior to the first DRW; wheat straw was added 7 days prior to the first DRW. Each DRW event consisted of 1 week drying and 1 week moist (50% of water holding capacity, WHC). After the last DRW, the soils were maintained moist until the end of the incubation period (63 days after addition of the wheat straw). A control was kept moist (50% of WHC) throughout the incubation period. Respiration rates on the day after rewetting were similar after the first and the second DRW, but significantly lower after the third DRW. After the first and second DRW, respiration rates were lower at EC17.6 compared to the lower EC levels, whereas salinity had little effect on respiration rates after the third DRW or at the end of the experiment when respiration rates were low. Compared to the continuously moist treatment, respiration rates were about 50% higher on day 15 (d15) and d29. On d44, respiration rates were about 50% higher at EC9.7 than at the other two EC levels. Cumulative respiration was increased by DRW only in the treatment with one DRW and only at the two lower EC levels. Salinity affected microbial biomass and community composition in the moist soils but not in the DRW treatments. At all EC levels and all sampling dates, the community composition in the continuously moist treatment differed from that in the DRW treatments, but there were no differences among the DRW treatments. Microbes in moderately saline soils may be able to utilise substrates released after multiple DRW events better than microbes in non-saline soil. However, at high EC (EC17.6), the low osmotic potential reduced microbial activity to such an extent that the microbes were not able to utilise substrate released after rewetting of dry soil.
Resumo:
Microbial community structure in saltmarsh soils is stratified by depth and availability of electron acceptors for respiration. However, the majority of the microbial species that are involved in the biogeochemical transformations of iron (Fe) and sulfur (S) in such environments are not known. Here we examined the structure of bacterial communities in a high saltmarsh soil profile and discuss their potential relationship with the geochemistry of Fe and S. Our data showed that the soil horizons Ag (oxic-suboxic), Bg (suboxic), Cri (anoxic with low concentration of pyrite Fe) and Cr-2 (anoxic with high concentrations of pyrite Fe) have distinct geochemical and microbiological characteristics. In general, total S concentration increased with depth and was correlated with the presence of pyrite Fe. Soluble + exchangable-Fe, pyrite Fe and acid volatile sulfide Fe concentrations also increased with depth, whereas ascorbate extractable-Fe concentrations decreased. The occurrence of reduced forms of Fe in the horizon Ag and oxidized Fe in horizon Cr-2 suggests that the typical redox zonation, common to several marine sediments, does not occur in the saltmarsh soil profile studied. Overall, the bacterial community structure in the horizon Ag and Cr-2 shared low levels of similarity, as compared to their adjacent horizons, Bg and Cr-1, respectively. The phylogenetic analyses of bacterial 16S rRNA gene sequences from clone libraries showed that the predominant phylotypes in horizon Ag were related to Alphaproteobacteria and Bacteroidetes. In contrast, the most abundant phylotypes in horizon Cr-2 were related to Deltaproteo-bacteria, Chloroflexi, Deferribacteres and Nitrospira. The high frequency of sequences with low levels of similarity to known bacterial species in horizons Ag and Cr-2 indicates that the bacterial communities in both horizons are dominated by novel bacterial species. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Microbial community composition was examined in two soil types, Anthrosols and adjacent soils, sampled from three locations in the Brazilian Amazon. The Anthrosols, also known as Amazonian dark earths, are highly fertile soils that are a legacy of pre-Columbian settlement. Both Anthrosols and adjacent soils are derived from the same parent material and subject to the same environmental conditions, including rainfall and temperature; however, the Anthrosols contain high levels of charcoal-like black carbon from which they derive their dark color. The Anthrosols typically have higher cation exchange capacity, higher pH, and higher phosphorus and calcium contents. We used culture media prepared from soil extracts to isolate bacteria unique to the two soil types and then sequenced their 16S rRNA genes to determine their phylogenetic placement. Higher numbers of culturable bacteria, by over two orders of magnitude at the deepest sampling depths, were counted in the Anthrosols. Sequences of bacteria isolated on soil extract media yielded five possible new bacterial families. Also, a higher number of families in the bacteria were represented by isolates from the deeper soil depths in the Anthrosols. Higher bacterial populations and a greater diversity of isolates were found in all of the Anthrosols, to a depth of up to 1 m, compared to adjacent soils located within 50-500 m of their associated Anthrosols. Compared to standard culture media, soil extract media revealed diverse soil microbial populations adapted to the unique biochemistry and physiological ecology of these Anthrosols.
Resumo:
Application of calcium silicate (SiCa) as soil acidity corrective was evaluated in a Rhodic Hapludox soil with palisade grass conducted under pasture rotation system with different grazing intensities. Experimental design was complete randomized blocks with four grazing intensities - grazing intensities were imposed by forage supply (50, 100, 150 and 200 kg t-1 of DM per LW) - in experimental plots with four replicates and, in the subplots, with seven doses of calcium silicate combined with lime: 0+0, 2+0, 4+0, 6+0, 2+4, 4+2 and 0+6 t ha-1, respectively. In the soil, it was evaluated the effect of four levels of calcium silicate (0, 2, 4 and 6 t ha-1) at 45, 90, and 365 days at three depths (0-10, 10-20 and 20-40 cm) and at 365 days, it was included one level of lime (6 t ha-1). For determination of leaf chemical composition and silicate content in the soil, four levels of calcium silicate (0, 2, 4 and 6 t ha-1) were evaluated at 45 and 365 days and at 45 days only for leaf silicate, whereas for dry matter production, all corrective treatments applied were evaluated in evaluation seasons. Application of calcium silicate was positive for soil chemical traits related to acidity correction (pH(CaCl2), Ca, Mg, K, H+Al and V), but the limestone promoted better results at 365 days. Leaf mineral contents were not influenced by application of calcium silicate, but there was an increase on silicate contents in leaves and in the soil. Dry matter yield and chemical composition of palisade grass improved with the application of correctives.
Resumo:
Gaseous N losses from soil are considerable, resulting mostly from ammonia volatilization linked to agricultural activities such as pasture fertilization. The use of simple and accessible measurement methods of such losses is fundamental in the evaluation of the N cycle in agricultural systems. The purpose of this study was to evaluate quantification methods of NH3 volatilization from fertilized surface soil with urea, with minimal influence on the volatilization processes. The greenhouse experiment was arranged in a completely randomized design with 13 treatments and five replications, with the following treatments: (1) Polyurethane foam (density 20 kg m-3) with phosphoric acid solution absorber (foam absorber), installed 1, 5, 10 and 20 cm above the soil surface; (2) Paper filter with sulfuric acid solution absorber (paper absorber, 1, 5, 10 and 20 cm above the soil surface); (3) Sulfuric acid solution absorber (1, 5 and 10 cm above the soil surface); (4) Semi-open static collector; (5) 15N balance (control). The foam absorber placed 1 cm above the soil surface estimated the real daily rate of loss and accumulated loss of NH3N and proved efficient in capturing NH3 volatized from urea-treated soil. The estimates based on acid absorbers 1, 5 and 10 cm above the soil surface and paper absorbers 1 and 5 cm above the soil surface were only realistic for accumulated N-NH3 losses. Foam absorbers can be indicated to quantify accumulated and daily rates of NH3 volatilization losses similarly to an open static chamber, making calibration equations or correction factors unnecessary.