2 resultados para SERVIDOR FTP

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The exhaust emission of the polycyclic aromatic hydrocarbons (PAHs) considered toxic to human health were investigated on two spark ignition light duty vehicles, one being gasohol (Gasohol, in Brazil, is the generic denomination for mixtures of pure gasoline plus 20-25% of anhydrous ethyl alcohol fuel (AEAF).)-fuelled and the other a flexible-fuel vehicle fuelled with hydrated ethanol. The influence of fuel type and quality, aged lubricant oil type and use of fuel additives on the formation of these compounds was tested using standardized tests identical to US FTP-75 cycle. PAH sampling and chemical analysis followed the basic recommendations of method TO-13 (United States. Environmental Protection Agency, 1999. Compendium Method TO-13A - Determination of polycyclic Aromatic hydrocarbons (PAH) in Ambient Air Using Gas Chromatography/Mass Spectrometry (CG/MS). Center for environmental research information, Cincinnati, p. 78), with the necessary modification for this particular application. Results showed that the total PAH emission factor varied from 41.9 mu g km(-1) to 612 mu g km(-1) in the gasohol vehicle, and from 11.7 mu g km(-1) to 27.4 mu g km(-1) in the ethanol-fuelled vehicle, a significant difference in favor of the ethanol vehicle. Generally, emission of light molecular weight PAHs was predominant, while high molecular weights PAHs were not detected. In terms of benzo(a)pyrene toxicity equivalence, emission factors varied from 0.00984 mu g TEQ km(-1) to 4.61 mu g TEQ km(-1) for the gasohol vehicle and from 0.0117 mu g TEQ km(-1) to 0.0218 mu g TEQ km(-1) in the ethanol vehicle. For the gasohol vehicle, results showed that the use of fuel additive causes a significant increase in the emission of naphthalene and phenanthrene at a confidence level of 90% or higher; the use of rubber solvent on gasohol showed a reduction in the emission of naphthalene and phenanthrene at the same confidence level; the use of synthetic oil instead of mineral oil also contributed significantly to a decrease in the emission of naphthalene and fluorene. In relation to the ethanol vehicle, the same factors were tested and showed no statistically significant influence on PAH emission. (c) 2008 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Vanillin was found to be efficient as a deactivator of ferrylmyoglobin with a second-order rate constant of k(2) = S7 +/- 1 L mol(-1) s(-1) for reduction to metmyoglobin with Delta H(double dagger) = 58.3 +/- 0.3 kJ mol(-1) and Delta S(double dagger) = -14 +/- 1 J mol(-1) K(-1) in aqueous pH 7.4 solution at 25 degrees C. Binding to beta-lactoglobulin (AG) was found to affect the reactivity of vanillin at 25 degrees C only slightly to k(2) = 48 +/- 2 L mol(-1) s(-1) (Delta H(double dagger) = 68.4 +/- 0.4 kJ mol(-1) and Delta S(double dagger) = 17 +/- 1 J mol(-1) K(-1)) for deactivation of ferrylmyoglobin. Binding of vanillin to beta LG was found to have a binding stoichiometry vanillin/beta LG > 10 with K(A) = 6 x 10(2) L mol(-1) and an apparent total Delta H degrees of approximately -38 kJ mol(-1) and Delta S degrees = -S5.4 +/- 4J mol(-1) K(-1) at 25 degrees C and Delta C(p), (obs) = -1.02 kJ mol(-1) K(-1) indicative of increasing ordering in the complex, as determined by isothermal titration microcalorimetry. From tryptophan fluorescence quenching for beta LG by vanillin, approximately one vanillin was found to bind to each beta LG far stronger with K(A) = 5 x 10(4) L, mol(-1) and a Delta H degrees = 10.2 kJ mol(-1) and Delta S degrees = 55J mol(-1) K(-1) at 25 degrees C. The kinetic entropy/enthalpy compensation effect seen for vanillin reactivity by binding to beta LG is concluded to relate to the weakly bound vanillin oriented through hydrogen bonds on the beta LG surface with the phenolic group pointing toward the solvent, in effect making both Delta H(double dagger) and Delta S(double dagger) more positive. The more strongly bound vanillin capable of tryptophan quenching in the fiLG calyx seems less or nonreactive.