8 resultados para SAPPHIRE
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
The aim of this work was to evaluate the performance of femtosecond laser-induced breakdown spectroscopy (fs-LIBS) for the determination of elements in animal tissues. Sample pellets were prepared from certified reference materials, such as liver, kidney, muscle, hepatopancreas, and oyster, after cryogenic grinding assisted homogenization. Individual samples were placed in a two-axis computer-controlled translation stage that moved in the plane orthogonal to a beam originating from a Ti:Sapphire chirped-pulse amplification (CPA) laser system operating at 800 mu and producing a train of 840 mu J and 40 fs pulses at 90 Hz. The plasma emission was coupled into the optical fiber of a high-resolution intensified charge-coupled device (ICCD)-echelle spectrometer. Time-resolved characteristics of the laser-produced plasmas showed that the best results were obtained with delay times between 80 and 120 ns. Data obtained indicate both that it is a matrix-independent sampling process and that fs-LIBS can be used for the determination of Ca, Cu, Fe, K, Mg, Na, and P, but efforts must be made to obtain more appropriate detection limits for Al, Sr, and Zn.
Resumo:
Objective: The aim of this study was to assess by atomic force microscopy (AFM) the effect of Er,Cr:YSGG laser application on the surface microtopography of radicular dentin. Background: Lasers have been used for various purposes in dentistry, where they are clinically effective when used in an appropriate manner. The Er, Cr: YSGG laser can be used for caries prevention when settings are below the ablation threshold. Materials and Methods: Four specimens of bovine dentin were irradiated using an Er, Cr:YSGG laser (lambda = 2.78 mu m), at a repetition rate of 20 Hz, with a 750-mu m-diameter sapphire tip and energy density of 2.8 J/cm(2) (12.5 mJ/pulse). After irradiation, surface topography was analyzed by AFM using a Si probe in tapping mode. Quantitative and qualitative information concerning the arithmetic average roughness (Ra) and power spectral density analyses were obtained from central, intermediate, and peripheral areas of laser pulses and compared with data from nonirradiated samples. Results: Dentin Ra for different areas were as follows: central, 261.26 (+/- 21.65) nm; intermediate, 83.48 (+/- 6.34) nm; peripheral, 45.8 (+/- 13.47) nm; and nonirradiated, 35.18 (+/- 2.9) nm. The central region of laser pulses presented higher ablation of intertubular dentin, with about 340-760 nm height, while intermediate, peripheral, and nonirradiated regions presented no difference in height of peritubular and interperitubular dentin. Conclusion: According to these results, we can assume that even when used at a low-energy density parameter, Er, Cr: YSGG laser can significantly alter the microtopography of radicular dentin, which is an important characteristic to be considered when laser is used for clinical applications.
Resumo:
Alumina ceramics with high in-line transmittance at 0.5-1.0 mm-thickness were prepared with different doping additives by sintering at 1850 degrees C in vacuum for 1-8 h. Depending on the additive contents and sintering variables bi-dimensionally large surface grains, caused by surface evaporation of MgO, had grown parallel to the surface with similar to 100 mu m thickness and lateral sizes up to the millimeter range. The abnormal grain-growth process also resulted in the formation of pores entrapped inside the large surface grains within a narrow zone at 10-20 mu m distance from the surface. The fraction of these pores is thickness-invariant. Scattering factors associated to the pores entrapped inside the bi-dimensionally large surface grains, second-phase particles, grain-boundaries, and microstructural surface defects are derived from the results of in-line transmission (at 600 nm) and are used together with microstructural characteristics to explain the light transmittance in these materials. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Optical diagnostic methods, such as near-infrared Raman spectroscopy allow quantification and evaluation of human affecting diseases, which could be useful in identifying and diagnosing atherosclerosis in coronary arteries. The goal of the present work is to apply Independent Component Analysis (ICA) for data reduction and feature extraction of Raman spectra and to perform the Mahalanobis distance for group classification according to histopathology, obtaining feasible diagnostic information to detect atheromatous plaque. An 830nm Ti:sapphire laser pumped by an argon laser provides near-infrared excitation. A spectrograph disperses light scattered from arterial tissues over a liquid-nitrogen cooled CCD to detect the Raman spectra. A total of 111 spectra from arterial fragments were utilized.
Resumo:
Here we present a status report of the first spherical antenna project equipped with a set of parametric transducers for gravitational detection. The Mario Schenberg, as it is called, started its commissioning phase at the Physics Institute of the University of Sao Paulo, in September 2006, under the full support of FAPESP. We have been testing the three preliminary parametric transducer systems in order to prepare the detector for the next cryogenic run, when it will be calibrated. We are also developing sapphire oscillators that will replace the current ones thereby providing better performance. We also plan to install eight transducers in the near future, six of which are of the two-mode type and arranged according to the truncated icosahedron configuration. The other two, which will be placed close to the sphere equator, will be mechanically non-resonant. In doing so, we want to verify that if the Schenberg antenna can become a wideband gravitational wave detector through the use of an ultra-high sensitivity non-resonant transducer constructed using the recent achievements of nanotechnology.
Resumo:
The Er(3)Al(5)O(12) phosphor powders were prepared using the solution combustion method. Formation and homogeneity of the Er(3)Al(5)O(12) phosphor powders have been verified by X-ray diffraction and energy-dispersive X-ray analysis respectively. The frequency up-conversion from Er(3)Al(5)O(12) phosphor powder corresponding to the (2)H(9/2) -> (4)I(15/2), (2)H(11/2) -> (4)I(15/2), (4)S(3/2) -> (4)I(15/2), (4)F(9/2) -> (4)I(15/2) and the infrared emission (IR) due to the (4)I(13/2) -> (4)I(15/2) transitions lying at similar to 410, similar to 524, similar to 556, 645-680 nm and at similar to 1.53 mu m respectively upon excitation with a Ti-Sapphire pulsed/CW laser have been reported. The mechanism responsible for the frequency up-conversion and IR emission is discussed in detail. Defect centres induced by radiation were studied using the techniques of thermoluminescence and electron spin resonance. A single glow peak at 430A degrees C is observed and the thermoluminescence results show the presence of a defect center which decays at high temperature. Electron spin resonance studies indicate a center characterized by a g-factor equal to 2.0056 and it is observed that this center is not related to the thermoluminescence peak. A negligibly small concentration of cation and anion vacancies appears to be present in the phosphor in accordance with the earlier theoretical predictions.
Resumo:
The Z-scan technique is employed to obtain the nonlinear refractive index (n (2)) of the Ca(4)REO(BO(3))(3) (RECOB, where RE = Gd and La) single crystals using 30 fs laser pulses centered at 780 nm for the two orthogonal orientations determined by the optical axes (X and Z) relative to the direction of propagation of the laser beam (k//Y// crystallographic b-axis). The large values of n (2) indicate that both GdCOB and LaCOB are potential hosts for Yb:RECOB lasers operating in the Kerr-lens mode locking (KLM) regime.
Resumo:
This study evaluated the process of ablation produced by a Ti:Sapphire femtosecond laser under different average powers taking place at the enamel/dentin interface. Based on the geometry of ablated microcavities the effective intensity for ablation was obtained. This study shows the validity for the local effective intensity analysis and allows a quantification of the variation in the ablation geometry taking place at the interface of two naturally different materials. It shows that the variation of the diameter of the ablated region as a function of the cavity depth comes essentially from a mechanism of effective intensity attenuation, as a result of a series of complex effects. Additionally, our data are sufficient to predict that a discontinuity on the ablation profile will occur on the interface between two biological media: enamel-dentin, showing a suddenly jump on the ablated cavity dimensions.