2 resultados para Royal Court Theatre.

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This essay is presented as a Benjaminian work site. The juxtaposition of apparently distant figures in brusque and surprising relations may well cause puzzlement. But the affinities are revealing. In the whirlpools of Michael Taussig`s studies, I search for a theoretical composition in counterpoint: on one side, Victor Turner and Clifford Geertz, whose writings possibly lead us to think of a kind of paradigm of the dramatic theatre in anthropology, and, on the other, two figures on the margins of anthropology and the dramatic theatre - Walter Benjamin and Bertolt Brecht. The essay`s gravitational force is located on these margins, especially the fragmented work of Benjamin. In short, this is an essay towards a Benjaminian anthropology, organized around three allegories: (1) magic mirror; (2) shattering; and (3) flashes of light. In some ways, the journey suggests the form of an unusual rite of passage: the passage towards a passing condition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Royal palm tree peroxidase (RPTP) is a very stable enzyme in regards to acidity, temperature, H(2)O(2), and organic solvents. Thus, RPTP is a promising candidate for developing H(2)O(2)-sensitive biosensors for diverse applications in industry and analytical chemistry. RPTP belongs to the family of class III secretory plant peroxidases, which include horseradish peroxidase isozyme C, soybean and peanut peroxidases. Here we report the X-ray structure of native RPTP isolated from royal palm tree (Roystonea regia) refined to a resolution of 1.85 angstrom. RPTP has the same overall folding pattern of the plant peroxidase superfamily, and it contains one heme group and two calcium-binding sites in similar locations. The three-dimensional structure of RPTP was solved for a hydroperoxide complex state, and it revealed a bound 2-(N-morpholino) ethanesulfonic acid molecule (MES) positioned at a putative substrate-binding secondary site. Nine N-glycosylation sites are clearly defined in the RPTP electron-density maps, revealing for the first time conformations of the glycan chains of this highly glycosylated enzyme. Furthermore, statistical coupling analysis (SCA) of the plant peroxidase superfamily was performed. This sequence-based method identified a set of evolutionarily conserved sites that mapped to regions surrounding the heme prosthetic group. The SCA matrix also predicted a set of energetically coupled residues that are involved in the maintenance of the structural folding of plant peroxidases. The combination of crystallographic data and SCA analysis provides information about the key structural elements that could contribute to explaining the unique stability of RPTP. (C) 2009 Elsevier Inc. All rights reserved.