5 resultados para Rotating shifts
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
The first stars that formed after the Big Bang were probably massive(1), and they provided the Universe with the first elements heavier than helium (`metals`), which were incorporated into low-mass stars that have survived to the present(2,3). Eight stars in the oldest globular cluster in the Galaxy, NGC 6522, were found to have surface abundances consistent with the gas from which they formed being enriched by massive stars(4) (that is, with higher alpha-element/Fe and Eu/Fe ratios than those of the Sun). However, the same stars have anomalously high abundances of Ba and La with respect to Fe(4), which usually arises through nucleosynthesis in low-mass stars(5) (via the slow-neutron-capture process, or s-process). Recent theory suggests that metal-poor fast-rotating massive stars are able to boost the s-process yields by up to four orders of magnitude(6), which might provide a solution to this contradiction. Here we report a reanalysis of the earlier spectra, which reveals that Y and Sr are also over-abundant with respect to Fe, showing a large scatter similar to that observed in extremely metal-poor stars(7), whereas C abundances are not enhanced. This pattern is best explained as originating in metal-poor fast-rotating massive stars, which might point to a common property of the first stellar generations and even of the `first stars`.
Resumo:
Although studies classify the polygynous mating system of a given species into female defense polygyny (FDP) or resource defense polygyny (RDP), the boundary between these two categories is often slight. Males of some species may even shift between these two types of polygyny in response to temporal variation in social and environmental conditions. Here, we examine the mating system of the Neotropical harvestman Acutisoma proximum and, in order to assess if mate acquisition in males corresponds to FDP or RDP, we tested four contrasting predictions derived from the mating system theory. At the beginning of the reproductive season, males fight with other males for the possession of territories on the vegetation where females will later oviposit, as expected in RDP. Females present a marked preference for specific host plant species, and males establish their territories in areas where these host plants are specially abundant, which is also expected in RDP. Later in the reproductive season, males reduce their patrolling activity and focus on defending individual females that are ovipositing inside their territories, as what occurs in FDP. This is the first described case of an arachnid that exhibits a shift in mating system over the reproductive season, revealing that we should be cautious when defining the mating system of a species based on few observations concentrated in a brief period.
Resumo:
The Velikhov effect leading to magnetorotational instability (MRI) is incorporated into the theory of ideal internal kink modes in a differentially rotating cylindrical plasma column. It is shown that this effect can play a stabilizing role for suitably organized plasma rotation profiles, leading to suppression of MHD (magnetohydrodynamic) instabilities in magnetic confinement systems. The role of this effect in the problem of the Suydam and the m = 1 internal kink modes is elucidated, where m is the poloidal mode number.
Resumo:
The one-fluid magnetohydrodynamic (MHD) theory of magnetorotational instability (MRI) in an ideal plasma is presented. The theory predicts the possibility of MRI for arbitrary 0, where 0 is the ratio of the plasma pressure to the magnetic field pressure. The kinetic theory of MRI in a collisionless plasma is developed. It is demonstrated that as in the ideal MHD, MRI can occur in such a plasma for arbitrary P. The mechanism of MRI is discussed; it is shown that the instability appears because of a perturbed parallel electric field. The electrodynamic description of MRI is formulated under the assumption that the dispersion relation is expressed in terms of the permittivity tensor; general properties of this tensor are analyzed. It is shown to be separated into the nonrotational and rotational parts. With this in mind, the first step for incorporation of MRI into the general theory of plasma instabilities is taken. The rotation effects on Alfven waves are considered.
Resumo:
New results are established here on the phase portraits and bifurcations of the kinematic model in system (1), first presented by H.K. Wilson in [3], and by him attributed to L. Markus (unpublished). A new, self-sufficient, study which extends that of [3] and allows an essential conclusion for the applicability of the model is reported here.