5 resultados para Root to shoot ratio
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Vector field formulation based on the Poisson theorem allows an automatic determination of rock physical properties (magnetization to density ratio-MDR-and the magnetization inclination-MI) from combined processing of gravity and magnetic geophysical data. The basic assumptions (i.e., Poisson conditions) are: that gravity and magnetic fields share common sources, and that these sources have a uniform magnetization direction and MDR. In addition, the previously existing formulation was restricted to profile data, and assumed sufficiently elongated (2-D) sources. For sources that violate Poisson conditions or have a 3-D geometry, the apparent values of MDR and MI that are generated in this way have an unclear relationship to the actual properties in the subsurface. We present Fortran programs that estimate MDR and MI values for 3-D sources through processing of gridded gravity and magnetic data. Tests with simple geophysical models indicate that magnetization polarity can be successfully recovered by MDR-MI processing, even in cases where juxtaposed bodies cannot be clearly distinguished on the basis of anomaly data. These results may be useful in crustal studies, especially in mapping magnetization polarity from marine-based gravity and magnetic data. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Likelihood ratio tests can be substantially size distorted in small- and moderate-sized samples. In this paper, we apply Skovgaard`s [Skovgaard, I.M., 2001. Likelihood asymptotics. Scandinavian journal of Statistics 28, 3-321] adjusted likelihood ratio statistic to exponential family nonlinear models. We show that the adjustment term has a simple compact form that can be easily implemented from standard statistical software. The adjusted statistic is approximately distributed as X(2) with high degree of accuracy. It is applicable in wide generality since it allows both the parameter of interest and the nuisance parameter to be vector-valued. Unlike the modified profile likelihood ratio statistic obtained from Cox and Reid [Cox, D.R., Reid, N., 1987. Parameter orthogonality and approximate conditional inference. journal of the Royal Statistical Society B49, 1-39], the adjusted statistic proposed here does not require an orthogonal parameterization. Numerical comparison of likelihood-based tests of varying dispersion favors the test we propose and a Bartlett-corrected version of the modified profile likelihood ratio test recently obtained by Cysneiros and Ferrari [Cysneiros, A.H.M.A., Ferrari, S.L.P., 2006. An improved likelihood ratio test for varying dispersion in exponential family nonlinear models. Statistics and Probability Letters 76 (3), 255-265]. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
We investigate the impact of the existence of a primordial magnetic field on the filter mass, characterizing the minimum baryonic mass that can form in dark matter (DM) haloes. For masses below the filter mass, the baryon content of DM haloes are severely depressed. The filter mass is the mass when the baryon to DM mass ratio in a halo is equal to half the baryon to DM ratio of the Universe. The filter mass has previously been used in semi-analytic calculations of galaxy formation, without taking into account the possible existence of a primordial magnetic field. We examine here its effect on the filter mass. For homogeneous comoving primordial magnetic fields of B(0) similar to 1 or 2 nG and a re-ionization epoch that starts at a redshift z(s) = 11 and is completed at z(r) = 8, the filter mass is increased at redshift 8, for example, by factors of 4.1 and 19.8, respectively. The dependence of the filter mass on the parameters describing the re-ionization epoch is investigated. Our results are particularly important for the formation of low-mass galaxies in the presence of a homogeneous primordial magnetic field. For example, for B(0) similar to 1 nG and a re-ionization epoch of z(s) similar to 11 and z(r) similar to 7, our results indicate that galaxies of total mass M similar to 5 x 108 M(circle dot) need to form at redshifts z(F) greater than or similar to 2.0, and galaxies of total mass M similar to 108 M(circle dot) at redshifts z(F) greater than or similar to 7.7.
Resumo:
The critical behavior of the stochastic susceptible-infected-recovered model on a square lattice is obtained by numerical simulations and finite-size scaling. The order parameter as well as the distribution in the number of recovered individuals is determined as a function of the infection rate for several values of the system size. The analysis around criticality is obtained by exploring the close relationship between the present model and standard percolation theory. The quantity UP, equal to the ratio U between the second moment and the squared first moment of the size distribution multiplied by the order parameter P, is shown to have, for a square system, a universal value 1.0167(1) that is the same for site and bond percolation, confirming further that the SIR model is also in the percolation class.
Resumo:
in this work, a simple method for the simultaneous determination of cocaine (COC) and five COC metabolites (benzoylecgonine, cocaethylene (CET), anhydroecgonine, anhydroecgonine methyl ester and ecgonine methyl ester) in human urine using CE coupled to MS via electrospray ionization (CE-ESI-MS) was developed and validated. Formic acid at 1 mol/L concentration was used as electrolyte whereas formic acid at 0.05 mol/L concentration in 1:1 methanol:water composed the coaxial sheath liquid at the ESI nozzle. The developed method presented good linearity in the dynamic range from 250 ng/mL to 5000 ng/mL (coefficient of determination greater than 0.98 for all compounds). LODs (signal-to-noise ratio of 3) were 100 ng/mL for COC and CET and 250 ng/mL for the other studied metabolites whereas LOQ`s (signal-to-noise ratio of 10) were 250 ng/mL for COC and CET and 500 ng/mL for all other compounds. Intra-day precision and recovery tests estimated at three different concentration levels (500, 1500 and 5000 ng/mL) provided RSD lower than 10% (except anhydroecgonine, 18% RSD) and recoveries from 83-109% for all analytes. The method was successfully applied to real cases. For the positive urine samples, the presence of COC and its` metabolites was further confirmed by MS/MS experiments.