2 resultados para Robots -- Computer programming

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Architectures based on Coordinated Atomic action (CA action) concepts have been used to build concurrent fault-tolerant systems. This conceptual model combines concurrent exception handling with action nesting to provide a general mechanism for both enclosing interactions among system components and coordinating forward error recovery measures. This article presents an architectural model to guide the formal specification of concurrent fault-tolerant systems. This architecture provides built-in Communicating Sequential Processes (CSPs) and predefined channels to coordinate exception handling of the user-defined components. Hence some safety properties concerning action scoping and concurrent exception handling can be proved by using the FDR (Failure Divergence Refinement) verification tool. As a result, a formal and general architecture supporting software fault tolerance is ready to be used and proved as users define components with normal and exceptional behaviors. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Localization and Mapping are two of the most important capabilities for autonomous mobile robots and have been receiving considerable attention from the scientific computing community over the last 10 years. One of the most efficient methods to address these problems is based on the use of the Extended Kalman Filter (EKF). The EKF simultaneously estimates a model of the environment (map) and the position of the robot based on odometric and exteroceptive sensor information. As this algorithm demands a considerable amount of computation, it is usually executed on high end PCs coupled to the robot. In this work we present an FPGA-based architecture for the EKF algorithm that is capable of processing two-dimensional maps containing up to 1.8 k features at real time (14 Hz), a three-fold improvement over a Pentium M 1.6 GHz, and a 13-fold improvement over an ARM920T 200 MHz. The proposed architecture also consumes only 1.3% of the Pentium and 12.3% of the ARM energy per feature.