3 resultados para River of Grass
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
This study is focused on the analysis of an accumulation of inorganic elements in muscles, liver and gonad of seven fish species from Sao Francisco River located in the Parana state of Brazil. Concentrations of the elements were determined using the SR-TXRF technique. In the muscles of fish species, negative length dependent relationships were observed for chromium and zinc ion absorption. The obtained results showed that accumulated Cr ions values are above the limits defined in the Brazilian legislative norm on food. (C) 2010 Elsevier Ltd All rights reserved.
Resumo:
Anthropogenic disturbances frequently modify natural disturbance regimes and foster the invasion and spread of nonindigenous species. However, there is some dispute about whether disturbance events or invasive plants themselves are the major factors promoting the local extinction of native plant species. Here, we used a set of savanna remnants comprising a gradient of invasive grass cover to evaluate whether the species richness of Asteraceae, a major component of the Brazilian Cerrado, is affected by invasive grass cover, or alternatively, whether variation in richness can be directly ascribed to disturbance-related variables. Furthermore, we evaluate whether habitat-specialist Asteraceae differ from habitat generalist species in their responses to grass invasion. Abundance and species richness showed unimodal variation along the invasive grass gradient for both total Asteraceae and habitat-generalists. The cerrado-specialist species, however, showed no clear variation from low-to-intermediate levels of grass cover, but declined monotonically from intermediate-to-higher levels. Through a structural equation model, we found that only invasive grass cover had significant effects on both abundance and species density of Asteraceae. The effect of invasive grass cover was especially high on the cerrado-specialist species, whose proportion declined consistently with increasing invasive dominance. Our results support the prediction that invasive grasses reduce the floristic uniqueness of pristine vegetation physiognomies.
Resumo:
Transcription factors (TFs) are major players in gene regulatory networks and interactions between TFs and their target genes furnish spatiotemporal patterns of gene expression. Establishing the architecture of regulatory networks requires gathering information on TFs, their targets in the genome, and the corresponding binding sites. We have developed GRASSIUS (Grass Regulatory Information Services) as a knowledge-based Web resource that integrates information on TFs and gene promoters across the grasses. In its initial implementation, GRASSIUS consists of two separate, yet linked, databases. GrassTFDB holds information on TFs from maize (Zea mays), sorghum (Sorghum bicolor), sugarcane (Saccharum spp.), and rice (Oryza sativa). TFs are classified into families and phylogenetic relationships begin to uncover orthologous relationships among the participating species. This database also provides a centralized clearinghouse for TF synonyms in the grasses. GrassTFDB is linked to the grass TFome collection, which provides clones in recombination-based vectors corresponding to full-length open reading frames for a growing number of grass TFs. GrassPROMDB contains promoter and cis-regulatory element information for those grass species and genes for which enough data are available. The integration of GrassTFDB and GrassPROMDB will be accomplished through GrassRegNet as a first step in representing the architecture of grass regulatory networks. GRASSIUS can be accessed from www.grassius.org.