35 resultados para Rice crop
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Potassium (K) plays an important role in many physiological and biochemical processes in plants and its adequate use is an important issue for sustainable economic crop production. Soil test-based K fertilizer recommendations are very limited for lowland rice (Oryza sativa L.) grown on Inceptisols. The objective of this study was to calibrate K soil testing for the response of lowland rice (cv. Ipagri 109) to added K. A field experiment was conducted in the farmers` field in the municipality of Lagoa da Confusao, State of Tocantins, central Brazil. The K rates used were 0, 125, 250, 375, 500, and 625 kg K ha-1 applied as broadcast and incorporated during sowing of the first rice crop. Rice responded significantly to K fertilization during 2 years of experimentation. Maximum grain yield of about 6,000 kg ha-1 was obtained with 57 mg K kg-1 soil in the first year and with 30 mg K kg-1 in the second year. This indicated that at low levels of K in the soil, nonexchangeable K was available for plant growth. Potassium use efficiency designated as agronomic efficiency (kg grain produced/kg K applied) decreased significantly in a quadratic fashion with increasing K level in the soil. Agronomic efficiency had a significantly linear association with grain yield. Hence, improving agronomic efficiency with management practices can improve rice yield.
Resumo:
Nowadays, rice is among the most preferred crops for rotation with soybean and cotton in the large producing areas of Central Brazil. Nevertheless, the host status of the Brazilian upland rice cultivars for Meloidogyne incognita race 4 and Rotylenchulus reniformis has not been investigated and remains unknown. This study dealt with the assessment of the host response of some selected Brazilian upland rice cultivars to these nematodes under glasshouse conditions. The host status for each tested interaction was based on the nematode reproduction factor (RF) and number of nematodes (g root)(-1). Two experiments with M. incognita race 4, referred to as trial I (initial population (IP) = 4000) and trial 2 (IP = 800), included, respectively, 14 cultivars (cvs AN Cirad 141, BRS Monarca, BRS Primavera, AN Cambara, BRS Pepita, BRS Curinga, BRS Sertaneja, IAPAR 9, IAPAR 62, IAPAR 63, IAPAR 64, IAPAR 117, IAC 201, IAC 202) and 19 cultivars (the same ones in Experiment 1 plus cvs BRS Maravilha, BRS Talento, BRS Bonanca, Ricetec Ecco, BRS Soberana). Except for cv. BRS Pepita, rated as resistant, the cultivars were rated as susceptible or moderately susceptible (RF means ranged from 1.09 to 12.56). In a third experiment with R. reniformis (IP = 1800) that included the same cultivars as in Experiment I, all cultivars were rated as resistant (RF means ranged from 0.01 to 0.29).
Resumo:
Urea and ammonium sulfate are principal nitrogen (N) sources for crop production. Two field experiments were conducted during three consecutive years to evaluate influence of urea and ammonium sulfate application on grain yield, soil pH, calcium (Ca) saturation, magnesium (Mg) saturation, base saturation, aluminum (Al) saturation, and acidity (H + Al) saturation in lowland rice production. Grain yield was significantly influenced by urea as well as ammonium sulfate fertilization. Soil pH linearly decreased with the application of N by ammonium sulfate and urea fertilizers. However, the magnitude of the pH decrease was greater by ammonium sulfate than by urea. The Ca and Mg saturations were decreased at the greater N rates compared to low rates of N by both the fertilizer sources. The Al and acidity saturation increased with increasing N rates by both the fertilizer sources. However, these acidity indices were increased more with the application of ammonium sulfate compared with urea. Rice grain yield had negative associations with pH, Ca saturation, Mg saturation, and base saturation and positive associations with Al and acidity saturation. This indicates that rice plant is tolerant to soil acidity.
Resumo:
The quantification of the available energy in the environment is important because it determines photosynthesis, evapotranspiration and, therefore, the final yield of crops. Instruments for measuring the energy balance are costly and indirect estimation alternatives are desirable. This study assessed the Deardorff's model performance during a cycle of a sugarcane crop in Piracicaba, State of São Paulo, Brazil, in comparison to the aerodynamic method. This mechanistic model simulates the energy fluxes (sensible, latent heat and net radiation) at three levels (atmosphere, canopy and soil) using only air temperature, relative humidity and wind speed measured at a reference level above the canopy, crop leaf area index, and some pre-calibrated parameters (canopy albedo, soil emissivity, atmospheric transmissivity and hydrological characteristics of the soil). The analysis was made for different time scales, insolation conditions and seasons (spring, summer and autumn). Analyzing all data of 15 minute intervals, the model presented good performance for net radiation simulation in different insolations and seasons. The latent heat flux in the atmosphere and the sensible heat flux in the atmosphere did not present differences in comparison to data from the aerodynamic method during the autumn. The sensible heat flux in the soil was poorly simulated by the model due to the poor performance of the soil water balance method. The Deardorff's model improved in general the flux simulations in comparison to the aerodynamic method when more insolation was available in the environment.
Resumo:
Many routes for extracting silica from rice hulls are based on direct calcining. These methods, though, often produce silica contaminated with inorganic impurities. This work presents the study of a strategy for obtaining silica from rice hulls with a purity level adequate for applications in electronics. The technique is based on two leaching steps, using respectively aqua regia and Piranha solutions, which extract the organic matrix and inorganic impurities. The material was characterized by Fourier-transform infrared spectroscopy (FTIR), powder x-ray diffraction (XRD), x-ray fluorescence (XRF), scanning electron microscopy (SEM), particle size analysis by laser diffraction (LPSA) and thermal analysis.
Resumo:
Cardiovascular disease is a serious public health problem; it is the first cause of death in Brazil and in developed countries. Thus, it is essential to search for alternative sources such as some functional foods to prevent and control the risks of this disease. The purpose of this study was to evaluate the lipidemic parameters in hypercholesterolemic rats fed diets containing black rice variety IAC 600 or unrefined rice. Adult male Wistar rats (Rattus norvegicus var. albinos) were used, weighing about 200-220 g. The animals were divided into four groups: the first received a control casein diet, the second received hypercholesterolemic diet, and the other two groups, after induction of hypercholesterolemia, received the test diets, the first containing 20% black rice and the second 20% unrefined, for 30 days. It was observed that diet containing black rice reduced the level of plasma cholesterol, triglycerides, and low-density lipoprotein. For high-density lipoprotein values, the diet that provided an increase in the levels was the black rice. The diet containing black rice was more effective in controlling the lipidemia in rats compared with the whole rice diet.
Resumo:
The introduction of crop management practices after conversion of Amazon Cerrado into cropland influences soil C stocks and has direct and indirect consequences on greenhouse gases (GHG) emissions. The aim of this study was to quantify soil C sequestration, through the evaluation of the changes in C stocks, as well as the GHG fluxes (N(2)O and CH(4)) during the process of conversion of Cerrado into agricultural land in the southwestern Amazon region, comparing no-tillage (NT) and conventional tillage (CT) systems. We collected samples from soils and made gas flux measurements in July 2004 (the dry season) and in January 2005 (the wet season) at six areas: Cerrado, CT cultivated with rice for 1 year (1CT) and 2 years (2CT), and NT cultivated with soybean for 1 year (1NT), 2 years (2NT) and 3 years (3NT), in each case after a 2-year period of rice under CT. Soil samples were analyzed in both seasons for total organic C and bulk density. The soil C stocks, corrected for a mass of soil equivalent to the 0-30-cm layer under Cerrado, indicated that soils under NT had generally higher C storage compared to native Cerrado and CT soils. The annual C accumulation rate in the conversion of rice under CT into soybean under NT was 0.38 Mg ha(-1) year(-1). Although CO(2) emissions were not used in the C sequestration estimates to avoid double counting, we did include the fluxes of this gas in our discussion. In the wet season, CO(2) emissions were twice as high as in the dry season and the highest N(2)O emissions occurred under the NT system. There were no CH(4) emissions to the atmosphere (negative fluxes) and there were no significant seasonal variations. When N(2)O and CH(4) emissions in C-equivalent were subtracted (assuming that the measurements made on 4 days were representative of the whole year), the soil C sequestration rate of the conversion of rice under CT into soybean under NT was 0.23 Mg ha(-1) year(-1). Although there were positive soil C sequestration rates, our results do not present data regarding the full C balance in soil management changes in the Amazon Cerrado. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Since 2000, the southwestern Brazilian Amazon has undergone a rapid transformation from natural vegetation and pastures to row-crop agricultural with the potential to affect regional biogeochemistry. The goals of this research are to assess wavelet algorithms applied to MODIS time series to determine expansion of row-crops and intensification of the number of crops grown. MODIS provides data from February 2000 to present, a period of agricultural expansion and intensification in the southwestern Brazilian Amazon. We have selected a study area near Comodoro, Mato Grosso because of the rapid growth of row-crop agriculture and availability of ground truth data of agricultural land-use history. We used a 90% power wavelet transform to create a wavelet-smoothed time series for five years of MODIS EVI data. From this wavelet-smoothed time series we determine characteristic phenology of single and double crops. We estimate that over 3200 km(2) were converted from native vegetation and pasture to row-crop agriculture from 2000 to 2005 in our study area encompassing 40,000 km(2). We observe an increase of 2000 km(2) of agricultural intensification, where areas of single crops were converted to double crops during the study period. (C) 2007 Elsevier Inc. All rights reserved.
Resumo:
The 30Si silicon isotope stable was used for assessing the accumulation and translocation of Si in rice and bean plants grown in labeled nutritive solution. The isotopic silicon composition in plant materials was determined by mass spectrometry (IRMS) using the method based on SiF4 formation. Considering the total-Si added into nutritive solutions, the quantity absorbed by plants was near to 51% for rice and 15% for bean plants. The accumulated amounts of Si per plant were about 150g in rice and 8.6g in bean. Approximately 70% of the total-Si accumulated was found in leaves. At presented experimental conditions, the results confirmed that once Si is accumulated in the old parts of rice and bean plant tissues it is not redistributed to new parts, even when Si is not supplied to plants from nutritive solution.
Resumo:
Upland rice plants, cultivar `IAC 202,` were grown in nutrient solution until full tillering. Treatments consisted of ammonium nitrate (AN) or urea (UR) as nitrogen (N) source plus molybdenum (Mo) and/or nickel (Ni): AN + Mo + Ni, AN + Mo - Ni, AN - Mo + Ni, UR + Mo + Ni, UR + Mo - Ni, and UR - Mo + Ni. The experiment was carried out to better understand the effect of these treatments on dry-matter yield, chlorophyll, net photosynthesis rate, nitrate (NO3 --N), total N, in vitro activities of urease and nitrate reductase (NR), and Mo and Ni concentrations. In UR-grown plants, Mo and Ni addition increased yield of dry matter. Regardless of the N source, chlorophyll concentration and net photosynthesis rate were reduced when Mo or Ni were omitted, although not always significantly. The omission of either Mo or Ni led to a decrease in urease activity, independent of N source. Nitrate reductase activity increased in nutrient solutions without Mo, although NO3 --N increased. There was not a consistent variation in total N concentration. Molybdenum and Ni concentration in roots and shoots were influenced by their supply in the nutrient solution. Molybdenum concentration was not influenced by N sources, whereas Ni content in both root and shoots was greater in ammonium nitrate-grown plants. In conclusion, it can be hypothesized that there is a relationship between Mo and Ni acting on photosynthesis, although is an indirect one. This is the first evidence for a beneficial effect of Mo and Ni interaction on plant growth.
Resumo:
Nitrogen is the nutrient that is most absorbed by the corn crop, with the most complex management, and has the highest share on the cost of corn production. The objective of this work was to evaluate the economic viability of different rates and split-applications of nitrogen fertilization, as such as urea, in the corn crop in a eutrophic Red Latosol (Oxisol). The study was carried out in the Experimental Station of the Regional Pole of the Sao Paulo Northwest Agribusiness Development (APTA), in Votuporanga, State of Sao Paulo, Brazil. The experimental design was randomized complete blocks with nine treatments and four replications, consisting of five N rates: 0, 55, 95, 135 and 175 kg ha(-1), 15 kg ha-l applied in the seeding and the remainder in top dressing: 40 and 80 kg ha(-1) N at forty days after seeding (DAS), or 1/2 + 1/2 at 20 and 40 DAS; 120 kg ha-1 N split in 1/2 + 1/2 or 1/3 + 1/3 + 1/3 at 20, 40 or 60 DAS; 160 kg ha(-1) N split in 1/4 + 3/8 + 3/8 or 114 + 1/4 + 1/4 + 1/4 at 20, 40, 60 and 80 DAS. The application of 135 kg ha-l of N split in three times provided the best benefit/cost ratio. The non-application of N provided the lowest economic return, proving to be unviable.
Characterization and greenhouse evaluation of Brazilian calcined nonapatite phosphate rocks for rice
Resumo:
Little information is available on the agronomic effectiveness of calcined nonapatite phosphate rock (PR) sources containing crandallite minerals in the form of Ca-Fe-Al-P for flooded and upland rice (Oryza sativa L.). We conducted laboratory and greenhouse studies to (i) characterize the mineralogical composition, (ii) investigate the solubility and dissolution behavior, and (iii) evaluate the agronomic effectiveness of two nonapatite PR sources (Juquia and Sapucaia) from Brazil and compared them with (i) a highly reactive Gafsa PR (Tunisia) containing apatite in the form of Ca-P and (ii) a reference water-soluble triple superphosphate (TSP) for flooded and upland rice. After calcination at 500 degrees C for 4 h, the solubility of Juquia PR and Sapucaia PR in neutral ammonium citrate (NAC) significantly increased from almost nil to a maximum of 39.3 and 114 g P kg(-1), respectively. X-ray diffraction showed that crystalline crandallite mineral was transformed to an amophorus form after calcination. The solubility behavior of the two calcined PR sources followed the same trend as Gafsa PR, that is, P release decreased with increasing equilibrium pH in the 0.01 M KCl solution (PH 3.0-8.0). At PH 3, the solubility followed: Gafsa PR > calcined Sapucaia PR > calcined Juquia PR. No P release was detected from any of the PR sources at pH >= 5.0 in the solution, indicating the Ca-P characteristic of the Ca-Fe-Al-P mineral controlled P dissolution of the calcined PR. Without calcination, both Juquia PR and Sapucaia PR were totally ineffective for upland rice grown on a Hiwassee clay loam (fine, kaolinitic, thermic Rhodic Kanhapludult) with pH 5.4 whereas a significant P response was observed with the calcined PR samples. For flooded rice grown on Hiwassee soil, the calcined Juquia PR and Sapucaia PR were 66 and 72%, respectively, as effective as TSP in increasing rice grain yield whereas Gafsa PR was ineffective. For upland rice grown on the unlimed soil, Gafsa PR was as effective as TSP in increasing rice grain yield whereas calcined Juquia PR and Sapucaia PR were 89 and 83% of TSP. The effectiveness of Gafsa PR was reduced to 0% after the soil was limed to pH 7.0 whereas the two calcined PR sources were reduced to 49% of TSP. Soil available P extracted by iron oxide impregnated filter paper (Pi test) or anion-exchange resin after rice harvest correlated well with P uptake by rice grain for flooded and upland rice.
Resumo:
Rice straw hemicellulosic hydrolysate was used as fermentation medium for ethanol production by Pichia stipitis NRRL Y-7124. Shaking bath experiments were initially performed aiming to establish the best initial xylose concentration to be used in this bioconversion process. In the sequence, assays were carried out under different agitation (100 to 200 rpm) and aeration ((V) under bar (flask)/V(medium) ratio varying from 2.5 to 5.0) conditions, and the influence of these variables on the fermentative parameters values (ethanol yield factor, Y(P/S); cell yield factor, Y(X/S); and ethanol volumetric productivity, Q(P)) was investigated through a 2(2) full-factorial design. Initial xylose concentration of about 50 g/l was the most suitable for the development of this process, since the yeast was able to convert substrate in product with high efficiency. The factorial design assays showed a strong influence of both process variables in all the evaluated responses. The agitation and aeration increase caused a deviation in the yeast metabolism from ethanol to biomass production. The best results (Y(P/S) = 0.37 g/g and Q(P) = 0.39 g/l. h) were found when the lowest aeration (2.5 V(flask)/V(medium) ratio) and highest agitation (200 rpm) levels were employed. Under this condition, a process efficiency of 72.5% was achieved. These results demonstrated that the establishment of adequate conditions of aeration is of great relevance to improve the ethanol production from xylose by Pichia stipitis, using rice straw hemicellulosic hydrolysate as fermentation medium.
Resumo:
This paper describes the modeling of a weed infestation risk inference system that implements a collaborative inference scheme based on rules extracted from two Bayesian network classifiers. The first Bayesian classifier infers a categorical variable value for the weed-crop competitiveness using as input categorical variables for the total density of weeds and corresponding proportions of narrow and broad-leaved weeds. The inferred categorical variable values for the weed-crop competitiveness along with three other categorical variables extracted from estimated maps for the weed seed production and weed coverage are then used as input for a second Bayesian network classifier to infer categorical variables values for the risk of infestation. Weed biomass and yield loss data samples are used to learn the probability relationship among the nodes of the first and second Bayesian classifiers in a supervised fashion, respectively. For comparison purposes, two types of Bayesian network structures are considered, namely an expert-based Bayesian classifier and a naive Bayes classifier. The inference system focused on the knowledge interpretation by translating a Bayesian classifier into a set of classification rules. The results obtained for the risk inference in a corn-crop field are presented and discussed. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Leaching is disadvantageous, both for economical and environmental reasons since it may decrease the ecosystem productivity and may also contribute to the contamination of surface and ground water. The objective of this paper was to quantify the loss of nitrogen and sulfur by leaching, at the depth of 0.9 m, in an Ultisol in Sao Paulo State (Brazil) with high permeability, Cultivated with sugarcane during the agricultural cycle of crop plant. The following ions were evaluated: nitrite, nitrate, ammonium, and sulfate. Calcium, magnesium, potassium, and phosphate were also evaluated at the same depth. The sugarcane was planted and fertilized in the furrows with 120 log ha(-1) of N-urea. In order to find out the fate of N-fertilizer, four microplots with (15)N-enriched fertilizer were installed. Input and output of the considered ions at the depth of 0.9 m were quantified from the flux density of water and the concentration of the elements in the soil solution at this soil depth: tensiometers, soil water retention curve and soil solution extractors were used for this quantification. The internal drainage was 205 mm of water, with a total loss of 18 kg ha(-1) of N and 10 kg ha(-1) of S. The percentage of N in the soil solution derived from the fertilizer (%NSSDF) was 1.34, resulting in only 25 g ha(-1) of N fertilizer loss by leaching during all agricultural cycle. Under the experimental conditions of this crop plant, that is, high demand of nutrients and high incorporation of crop residues, the leached N represented 15% of applied N and S leaching were not considerable; the higher amount of leached N was native nitrogen and a minor quantity from N fertilizer; and the leached amount of Ca, Mg, K and P did not exceed the applications performed in the crop by lime and fertilization. (C) 2009 Elsevier B.V. All rights reserved.