10 resultados para Reservoir environmental impacts

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study evaluates the impacts of Brazilian highway conditions on fuel consumption and, consequently, on carbon dioxide (COO emissions. For the purpose of this study, highway conditions refer to the level of highway maintenance: the incidence of large potholes, large surface cracks, uneven sections, and debris. Primary computer collected data related to the fuel consumption of three types of trucks were analyzed. The data were derived from 88 trips taken over six routes, each route representative of one of two highway conditions: better or worse. Study results are initially presented for each type of truck being monitored. The results are then aggregated to approximate the entire Brazilian highway network. In all cases, results confirmed environmental benefits resulting from travel over the better routes. There was found to be an increase in energy efficiency from traveling better roads, which resulted in lower fuel consumption and lower CO(2) emissions. Statistical analysis of the results suggests that, in general, fuel consumption data were significant at *P < 0.05, rejecting the null hypothesis that average fuel consumption from traveling the better routes is statistically equal to average fuel consumption from traveling the worse routes. Improved Brazilian road conditions would generate economic benefits, reduce dependency on and consumption of fossil fuels (due to the increase in energy efficiency), and reduce CO(2) emissions. These findings may have additional relevancy if Brazil needs to reduce carbon dioxide emissions to reach future Kyoto Protocol`s emissions targets, which should take effect in January 2013. (c) 2008 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The introduction of allochthonous fish species happens constantly in large bodies of freshwater, like as the reservoirs of Parana Basin, located in Brazilian southeast, representing a threat for local biodiversity. The fish species Plagioscion squamosissimus and Cichla ocellaris were introduced from the 1970s in several water bodies of this basin and had successfully established themselves in all six reservoirs located in the middle and lower Tiete River (SP, Brazil), particularly. After six decades from the first recorded species introduction, this hydrographic system remains open to the invasion of further fish species, owing to widespread fish-farming activity and by the channels opened between this system and other reservoirs and river basin. This study was an effort to confirm the Geophagus proximus occurrence in the six Tiete River reservoirs, verifying the actual introduction status and analyzing its potential environmental impacts on local species by the analysis of the population structure (abundance, body dimensions and feeding habits). By the results, this species was confirmed in the Ibitinga, Nova Avanhandava and Tres Irmaos reservoirs. The abundance and feeding analysis shows, respectively, it is successfully established in the Tres Irmaos reservoir with the same feeding habitats of local species, such as Geophagus brasiliensis. It was further shown to be very likely that G. proximus would spread throughout the reservoir system of the middle and lower Tiete River, in the manner of P. squamosissimus and C. ocellaris, and the competition pressure for food resources between G. proximus and the local species which represents a potential environmental impact system. These scientific evidences fortifies the knowledge basin for the implantation of a fish management system, to control and reduce the abundance of the invader and to prevent its becoming established in all the Tiete River Basin, avoiding the disastrous consequences for the native species of Parana River Basin.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Faz-se, por meio de uma abordagem ambiental histórico-dialética, a caracterização dos processos auríferos desenvolvidos no município de Faina, Goiás. São analisadas três atividades: mineração escrava, mineração de dragagem e mineração industrial. Evidenciou-se que a exploração por dragagem tem um maior poder impactante. Sobretudo, a mineração aurífera em Faina contribuiu para a história ambiental local e para o resgate dessa no Brasil.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

O fósforo é um nutriente com fontes finitas e não renováveis, cuja velocidade de exploração é atualmente muito superior às suas taxas de retorno ao seu ciclo natural, sendo que já existem previsões a respeito de um provável colapso nas suas fontes disponíveis e conhecidas, com impactos econômicos, sociais e ambientais graves e irreversíveis. Diante desse cenário, o presente trabalho busca apresentar informações sobre a dinâmica do fósforo no meio ambiente, avaliando os impactos causados pelas atividades humanas e verificando as ações que podem auxiliar na preservação do ciclo do nutriente. Visando contribuir para uma melhor visualização do assunto, foi analisada a evolução dos dados relativos à concentração populacional, número de industriais e extensão das áreas cultivadas em uma bacia hidrográfica, em relação às concentrações de fósforo nos compartimentos água e sedimento, ao longo de 22 anos. Para tanto, utilizou-se o rio Tietê como estudo de caso. Os resultados obtidos indicam que o controle das fontes domésticas, principalmente da quantidade de tripolifosfato de sódio (STPP) utilizada nos detergentes, é de grande importância para melhoria da qualidade das águas, proteção ao meio ambiente e garantia da saúde pública

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Understanding the product`s `end-of-life` is important to reduce the environmental impact of the products` final disposal. When the initial stages of product development consider end-of-life aspects, which can be established by ecodesign (a proactive approach of environmental management that aims to reduce the total environmental impact of products), it becomes easier to close the loop of materials. The `end-of-life` ecodesign methods generally include more than one `end-of-life` strategy. Since product complexity varies substantially, some components, systems or sub-systems are easier to be recycled, reused or remanufactured than others. Remanufacture is an effective way to maintain products in a closed-loop, reducing both environmental impacts and costs of the manufacturing processes. This paper presents some ecodesign methods focused on the integration of different `end-of-life` strategies, with special attention to remanufacturing, given its increasing importance in the international scenario to reduce the life cycle impacts of products. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The removal of sulfate and organic matter was assessed in an ASBR, which treated wastewater containing 500 mg COD L(-1) (3 g COD L(-1) d(-1)) in 8 h-cycles at 30 degrees C. The wastewater was enriched with sulfate at [COD/SO(4)(2-]) ratios of 1.34, 0.67 and 0.34 (8.8,4.5 and 2.2 gSO(4)(2-) L(-1) d(-1)). For each COD/[SO(4)(2-)] ratio fill times used were: 10 min (batch), 3 and 6 h (fed-batch), achieving sulfate reduction of 30%, 72% and 72% (COD/[SO(4)(2-)] of 1.34); 25%, 58% and 55% (COD/[SO(4)(2-)] of 0.67) and 23%, 37% and 27% (COD/[SO(4)(2-)] of 0.34), respectively, and organic matter removal of 87%, 68% and 80% (COD/[SO(4)(2-)] of 1.34); 78%, 75% and 69% (COD/[SO(4)(2-)] of 0.67) and 85%, 84% and 83% (COD/[SO(4)(2-)] of 0.34), respectively. The results showed that fed-batch operation improved sulfate reduction, whereas organic matter removals were similar for batch and fed-batch operation. In addition, increase in sulfate loading in the fed-batch operation improved organic matter removal. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents the lifecycle assessment (LCA) of fuel ethanol, as 100% of the vehicle fuel, from sugarcane in Brazil. The functional unit is 10,000 km run in an urban area by a car with a 1,600-cm(3) engine running on fuel hydrated ethanol, and the resulting reference flow is 1,000 kg of ethanol. The product system includes agricultural and industrial activities, distribution, cogeneration of electricity and steam, ethanol use during car driving, and industrial by-products recycling to irrigate sugarcane fields. The use of sugarcane by the ethanol agribusiness is one of the foremost financial resources for the economy of the Brazilian rural area, which occupies extensive areas and provides far-reaching potentials for renewable fuel production. But, there are environmental impacts during the fuel ethanol lifecycle, which this paper intents to analyze, including addressing the main activities responsible for such impacts and indicating some suggestions to minimize the impacts. This study is classified as an applied quantitative research, and the technical procedure to achieve the exploratory goal is based on bibliographic revision, documental research, primary data collection, and study cases at sugarcane farms and fuel ethanol industries in the northeast of SA o pound Paulo State, Brazil. The methodological structure for this LCA study is in agreement with the International Standardization Organization, and the method used is the Environmental Design of Industrial Products. The lifecycle impact assessment (LCIA) covers the following emission-related impact categories: global warming, ozone formation, acidification, nutrient enrichment, ecotoxicity, and human toxicity. The results of the fuel ethanol LCI demonstrate that even though alcohol is considered a renewable fuel because it comes from biomass (sugarcane), it uses a high quantity and diversity of nonrenewable resources over its lifecycle. The input of renewable resources is also high mainly because of the water consumption in the industrial phases, due to the sugarcane washing process. During the lifecycle of alcohol, there is a surplus of electric energy due to the cogeneration activity. Another focus point is the quantity of emissions to the atmosphere and the diversity of the substances emitted. Harvesting is the unit process that contributes most to global warming. For photochemical ozone formation, harvesting is also the activity with the strongest contributions due to the burning in harvesting and the emissions from using diesel fuel. The acidification impact potential is mostly due to the NOx emitted by the combustion of ethanol during use, on account of the sulfuric acid use in the industrial process and because of the NOx emitted by the burning in harvesting. The main consequence of the intensive use of fertilizers to the field is the high nutrient enrichment impact potential associated with this activity. The main contributions to the ecotoxicity impact potential come from chemical applications during crop growth. The activity that presents the highest impact potential for human toxicity (HT) via air and via soil is harvesting. Via water, HT potential is high in harvesting due to lubricant use on the machines. The normalization results indicate that nutrient enrichment, acidification, and human toxicity via air and via water are the most significant impact potentials for the lifecycle of fuel ethanol. The fuel ethanol lifecycle contributes negatively to all the impact potentials analyzed: global warming, ozone formation, acidification, nutrient enrichment, ecotoxicity, and human toxicity. Concerning energy consumption, it consumes less energy than its own production largely because of the electricity cogeneration system, but this process is highly dependent on water. The main causes for the biggest impact potential indicated by the normalization is the nutrient application, the burning in harvesting and the use of diesel fuel. The recommendations for the ethanol lifecycle are: harvesting the sugarcane without burning; more environmentally benign agricultural practices; renewable fuel rather than diesel; not washing sugarcane and implementing water recycling systems during the industrial processing; and improving the system of gases emissions control during the use of ethanol in cars, mainly for NOx. Other studies on the fuel ethanol from sugarcane may analyze in more details the social aspects, the biodiversity, and the land use impact.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This article discusses the importance of the industrialization of Brazilian shale based on factors such as: security of the national energy system security, global oil geopoliticsl, resources available, production costs, oil prices, environmental impacts and the national oil reserves. The study shows that the industrialization of shale always arises when issues such as peak oil or its geopolitics appear as factors that raise the price of oil to unrealistic levels. The article concludes that in the Brazilian case, shale oil may be classified as a strategic resource, economically viable, currently in development by the success of the retorting technology for extraction of shale oil and the price of crude oil. The article presents the conclusion that shale may be the driving factor for the formation of a technology park in Sao Mateus do Sul, due to the city`s economic dependence on Petrosix.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Precision agriculture (PA) technologies are being applied to crops in Brazil, which are important to ensure Brazil`s position in agricultural production. However, there are no studies available at present to indicate the extent to which PA technologies are being used in the country. Therefore, the main objective of this research was to investigate how the sugar-ethanol industry in So Paulo state, which produces 60% of the domestic sugarcane, is adopting and using these techniques. For this purpose, primary data were used, which were obtained from a questionnaire sent to all companies operating in the sugar-ethanol industry in the region. The aim was to determine to what extent these companies are adopting and using PA technologies, and also to promote a more in-depth discussion of the topic within the sugar-ethanol industry. Information was obtained on the features of the companies, on sources of information that they use for adopting these technologies, on their impacts on these companies and on obstacles hindering their adoption. The main conclusions of this research suggest that companies that adopt and use PA practices reap benefits, such as managerial improvements, higher yields, lower costs, minimization of environmental impacts and improvements in sugarcane quality.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The need for biodegradable polymers for packaging has fostered the development of novel, biodegradable polymeric materials from natural sources, as an alternative to reduce amount of waste and environmental impacts. The present investigation involves the synthesis of chitosan nanoparticles-carboxymethylcellulose films, in view of their increasing areas of application in packaging industry. The entire process consists of 2-steps including chitosan nanoparticles preparation and their incorporation in carboxymethylcellulose films. Uniform and stable particles were obtained with 3 different chitosan concentrations. The morphology of chitosan nanoparticles was tested by transmission electron microscopy, revealing the nanoparticles size in the range of 80 to 110 nm. The developed film chitosan nanoparticles-carboxymethylcellulose films were characterized by Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis, solubility tests, and mechanical analysis. Improvement of thermal and mechanical properties were observed in films containing nanoparticles, with the best results occurring upon addition of nanoparticles with 110 nm size in carboxymethylcellulose films. Practical Application Carboxymethylcellulose films containing chitosan nanoparticles synthesized and characterized in this article could be a potential material for food and beverage packaging applications products due to the increase mechanical properties and high stability. The potential application of the nanocomposites prepared would be in packaging industry to extend the shelf life of products.