3 resultados para Reprocessing Emdr
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Background. Several medical devices used during hemodynamic procedures, particularly angiographic diagnostic and therapeutic cardiac catheters, are manufactured for single use only. However, reprocessing and reuse of these devices has been reported, to determine the frequency of reuse and reprocessing of single-use medical devices used during hemodynamic procedures in Brazil and to evaluate how reprocessing is performed. Design. National survey, conducted from December 1999 to July 2001. Methods. Most of the institutions affiliated with the Brazilian Society of Hemodynamic and Interventional Cardiology were surveyed by use of a questionnaire sent in the mail. Results. The questionnaire response rate was 50% (119 of 240 institutions). Of the 119 institutions that responded, 116 (97%) reported reuse of single-use devices used during hemodynamic procedures, and only 26 (22%) reported use of a standardized reprocessing protocol. Cleaning, flushing, rinsing, drying, sterilizing and packaging methods varied greatly and were mostly inadequate. Criteria for discarding reused devices varied widely. Of the 119 institutions that responded, 80 (67%) reported having a surveillance system for adverse events associated with the reuse of medical devices, although most of these institutions did not routinely review the data, and only 38 (32%) described a training program for the personnel who reprocessed single-use devices. Conclusions. The reuse of single-use devices used during hemodynamic procedures was very frequent in hospitals in Brazil. Basic guidance on how to reuse and reprocess single-use medical devices is urgently needed, because, despite the lack of studies to support reusing and reprocessing single-use medical devices, such devices are necessary in limited-resource areas in which these practices are current.
Resumo:
Strangelets (hypothetical stable lumps of strange quarkmatter) of astrophysical origin may be ultimately detected in specific cosmic ray experiments. The initial mass distribution resulting from the possible astrophysical production sites would be subject to reprocessing in the interstellar medium and in the earth`s atmosphere. In order to get a better understanding of the claims for the detection of this still hypothetic state of hadronic matter, we present a study of strangelet-nucleus interactions including several physical processes of interest (abrasion, fusion, fission, excitation and de-excitation of the strangelets), to address the fate of the baryon number along the strangelet path. It is shown that, although fusion may be important for low-energy strangelets in the interstellar medium (thus increasing the initial baryon number A), in the earth`s atmosphere the loss of the baryon number should be the dominant process. The consequences of these findings are briefly addressed.
Resumo:
The aim of this study was to verify and describe the presence of microorganisms in the single-use trocar after its use in surgical procedures, and after this device was submitted to cleaning, conditioning, and sterilization by physicochemical processes (formaldehyde, ethylene oxide, and hydrogen peroxide plasma). Twenty-eight trocars of the Ethicon, Auto-suture, and Aesculap brands, were randomly selected and analyzed after laparoscopic cholecystectomy. The results have shown that cultures grown of the material collected from the trocars, immediately after its use and before its sterilization process, showed the presence of bacteria and fungi in 46.5% (13). In 53.5% (15) of the trocars, the presence of microorganisms was not detected, very likely due to niche`s scarcity. In the cultures grown of the 28 trocars after being submitted to sterilization processes, the presence of microorganisms was not verified. We can therefore conclude that although trocars possess compartments not easily accessed for cleaning, these devices can be adequately cleaned and effectively sterilized, when well manipulated, in the institution where the study was carried out by the processes of steam sterilization at low temperature and formaldehyde, ethylene oxide, and hydrogen peroxide plasma.