4 resultados para Relation theory
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
The one-fluid magnetohydrodynamic (MHD) theory of magnetorotational instability (MRI) in an ideal plasma is presented. The theory predicts the possibility of MRI for arbitrary 0, where 0 is the ratio of the plasma pressure to the magnetic field pressure. The kinetic theory of MRI in a collisionless plasma is developed. It is demonstrated that as in the ideal MHD, MRI can occur in such a plasma for arbitrary P. The mechanism of MRI is discussed; it is shown that the instability appears because of a perturbed parallel electric field. The electrodynamic description of MRI is formulated under the assumption that the dispersion relation is expressed in terms of the permittivity tensor; general properties of this tensor are analyzed. It is shown to be separated into the nonrotational and rotational parts. With this in mind, the first step for incorporation of MRI into the general theory of plasma instabilities is taken. The rotation effects on Alfven waves are considered.
Resumo:
Axelrod`s model for culture dissemination offers a nontrivial answer to the question of why there is cultural diversity given that people`s beliefs have a tendency to become more similar to each other`s as they interact repeatedly. The answer depends on the two control parameters of the model, namely, the number F of cultural features that characterize each agent, and the number q of traits that each feature can take on, as well as on the size A of the territory or, equivalently, on the number of interacting agents. Here, we investigate the dependence of the number C of distinct coexisting cultures on the area A in Axelrod`s model, the culture-area relationship, through extensive Monte Carlo simulations. We find a non-monotonous culture-area relation, for which the number of cultures decreases when the area grows beyond a certain size, provided that q is smaller than a threshold value q (c) = q (c) (F) and F a parts per thousand yen 3. In the limit of infinite area, this threshold value signals the onset of a discontinuous transition between a globalized regime marked by a uniform culture (C = 1), and a completely polarized regime where all C = q (F) possible cultures coexist. Otherwise, the culture-area relation exhibits the typical behavior of the species-area relation, i.e., a monotonically increasing curve the slope of which is steep at first and steadily levels off at some maximum diversity value.
Resumo:
We employed the Density Functional Theory along with small basis sets, B3LYP/LANL2DZ, for the study of FeTIM complexes with different pairs of axial ligands (CO, H(2)O, NH(3), imidazole and CH(3)CN). These calculations did not result in relevant changes of molecular quantities as bond lengths, vibrational frequencies and electronic populations supporting any significant back-donation to the carbonyl or acetonitrile axial ligands. Moreover, a back-donation mechanism to the macrocycle cannot be used to explain the observed changes in molecular properties along these complexes with CO or CH(3)CN. This work also indicates that complexes with CO show smaller binding energies and are less stable than complexes with CH(3)CN. Further, the electronic band with the largest intensity in the visible region (or close to this region) is associated to the transition from an occupied 3d orbital on iron to an empty pi* orbital located at the macrocycle. The energy of this Metal-to-Ligand Charge Transfer (MLCT) transition shows a linear relation to the total charge of the macrocycle in these complexes as given by Mulliken or Natural Population Analysis (NPA) formalisms. Finally, the macrocycle total charge seems to be influenced by the field induced by the axial ligands. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
We investigated noble gas copper bonds in linear complexes represented by the NgCuX general formula in which Ng and X stand for a noble gas (neon, argon, krypton, or xenon) and a halogen (fluorine, chlorine or bromine), respectively, by coupled cluster methods and modified cc-pVQZ basis sets. The quantum theory of atoms in molecules (QTAIM) shows a linear relation between the dissociation energy or noble gas-copper bonds and the amount of electronic charge transferred mainly from the noble gas to copper during complexation. Large changes in the QTAIM quadrupole moments of copper and noble gases resulting from this bonding and a comparison between NgCuX and NgNaCl systems indicate that these noble gas-copper bonds should be better interpreted as predominantly covalent. Finally, QTAIM atomic dipoles of noble gases in NgNaCl systems agree satisfactorily with atomic dipoles given by a simple model for these NgNa van der Waals bonds.