520 resultados para Reinforcement from drinking
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Aeromonads are inhabitants of aquatic ecosystems and are described as being involved in intestinal disturbances and other infections. A total of 200 drinking water samples from domestic and public reservoirs and drinking fountains located in São Paulo (Brazil), were analyzed for the presence of Aeromonas. Samples were concentrated by membrane filtration and enriched in APW. ADA medium was used for Aeromonas isolation and colonies were confirmed by biochemical characterization. Strains isolated were tested for hemolysin and toxin production. Aeromonas was detected in 12 samples (6.0%). Aeromonas strains (96) were isolated and identified as: A. caviae (41.7%), A. hydrophila (15.7%), A.allosacharophila (10.4%), A. schubertii (1.0%) and Aeromonas spp. (31.2%).The results revealed that 70% of A. caviae, 66.7% of A. hydrophila, 80% of A. allosacharophila and 46.6% of Aeromonas spp. were hemolytic. The assay for checking production of toxins showed that 17.5% of A. caviae, 73.3% of A. hydrophila, 60% of A. allosacharophila, 100% of A. schubertii, and 33.3% of Aeromonas spp. were able to produce toxins. The results demonstrated the pathogenic potential of Aeromonas, indicating that the presence of this emerging pathogen in water systems is a public health concern
Resumo:
This paper presents the possible alternative removal options for the development of safe drinking water supply in the trace elements affected areas. Arsenic and chromium are two of the most toxic pollutants, introduced into natural waters from a variety of sources and causes various adverse effects on living bodies. Performance of three filter bed method was evaluated in the laboratory. Experiments have been conducted to investigate the sorption of arsenic and chromium on carbon steel and removal of trace elements from drinking water with a household filtration process. The affinity of the arsenic and chromium species for Fe/Fe(3)C (iron/iron carbide) sites is the key factor controlling the removal of the elements. The method is based on the use of powdered block carbon (PBC), powder carbon steel and ball ceramic in the ion-sorption columns as a cleaning process. The PBC modified is a satisfactory and practical sorbent for trace elements (arsenite and chromate) dissolved in water.
Resumo:
Aeromonads are inhabitants of aquatic ecosystems and are described as being involved in intestinal disturbances and other infections. A total of 200 drinking water samples from domestic and public reservoirs and drinking fountains located in Sao Paulo (Brazil), were analyzed for the presence of Aeromonas. Samples were concentrated by membrane filtration and enriched in APW. ADA medium was used for Aeromonas isolation and colonies were confirmed by biochemical characterization. Strains isolated were tested for hemolysin and toxin production. Aeromonas was detected in 12 samples (6.0%). Aeromonas strains (96) were isolated and identified as: A. caviae (41.7%), A. hydrophila (15.7%), A. allosacharophila (10.4%), A. schubertii (1.0%) and Aeromonas spp. (31.2%). The results revealed that 70% of A. caviare, 66.7% of A. hydrophila, 80% of A. allosacharophila and 46.6% of Aeromonas spp. were hemolytic. The assay for checking production of toxins showed that 17.5% of A. caviae, 73.3% of A. hydrophila, 60% of A. allosacharophila, 100% of A. schubertii, and 33.3% of Aeromonas spp. were able to produce toxins. The results demonstrated the pathogenic potential of Aeromonas, indicating that the presence of this emerging pathogen in water systems is a public health concern.
Resumo:
The protozoan parasites Giardia and Cryptosporidium have been described as important waterbone disease pathogens, and are associated with severe gastrointestinal illnesses. The objective of this paper was to investigate the presence of Giardia cysts and Cryptosporidium oocysts in sample from wtershed catchments and treated water sources. A total of 25 water samples were collected and examined according to the EPA - Method 1623, 2005, consisting of 12 from drinking water and 13 from raw water. Positive samples from raw water for Giardia cysts and Cryptosporidium oocysts were 46.1 and 7.6%, respectively. In finished water, positive samples were 41.7 per centfor Giardia cysts and 25 per cent for Cryptosporidium oocysts. Concentrations of Giardia cysts found in raw water samples ranged from "not detected" to 0.1oocysts/L, whereas concentrations of Cryptosporidium oocystsranged from "not detected" to 0.1 oocysts/L. In finished water, Giardia concentrations ranged from "not detected" to 0.06 cysts/L, and Cryptosporidium oocysts were not high in the samples analyzed. Nevertheless, the results of this study highlight the need to monitor these organisms in both raw and drinking water.
Resumo:
This paper present the possible alternative options for the remove of trace elements from drinking water supplies in the trace. Arsenic and chromium are two of the most toxic pollutants, introduced into natural waters from a variety of sources and causing various adverse effects on living bodies. The performance of three filter bed methods was evaluated in the laboratory. Experiments were conducted to investigate the sorption of arsenic and chromium on carbon steel and removal of trace elements from drinking water with a household filtration process. The affinity of the arsenic and chromium species for Fe / Fe3C (iron / iron carbide) sites is the key factor controlling the removal of the elements. The method is based on the use of powdered block carbon, powder carbon steel and ceramic spheres in the ion-sorption columns as a cleaning process. The modified powdered block carbon is a satisfactory and economical sorbent for trace elements (arsenite and chromate) dissolved in water due to its low unit cost of about $23 and compatibility with the traditional household filtration system.
Resumo:
Arsenic (As) and chromium (Cr) are two of the most toxic pollutants introduced into natural waters from a variety of sources, and they cause various adverse effects on living bodies when their concentrations exceed permissible limits. Laboratory experiments have been conducted to investigate the sorption of As and Cr on carbon steel and removal of trace elements from drinking water with a household filtration process. The affinity of As and Cr species for iron/iron carbide (Fe/Fe3C) sites is the key factor in controlling the removal of the elements. The method is based on the use of powder carbon steel, powdered block carbon, and ball ceramic in the ion-sorption columns as a cleaning process. The presence of carbon steel in a system that contains As3+ and Cr6+ might have a potential effect.
Resumo:
A study was conducted to determine the effects of feeding spineless cactus cladodes on diuresis and urinary electrolyte excretion in goats. Five bucks were used in a 5 x 5 Latin square experiment with 17-day periods. Experimental diets contained (g/kg dry matter (DM) basis) 370, 470, 570, 670, and 770 spineless cactus cladodes. Water consumption from feed and urine output increased linearly (P<0.05) as the level of cactus cladodes in the diet increased. However, water intake from drinking was low and unaffected by cactus cladode level. Creatinine clearance and urinary Na excretion were similar for all dietary treatments while K excretion decrease linearly (P<0.05) as the level of cactus cladodes in the diet increased. Feeding cactus cladodes caused diuresis and reduced urinary K excretion in goats. Possible reasons for these effects include water over-consumption from cactus cladodes and high dietary K intake. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Aeromonas genus is considered an emerging pathogen and its presence in drinking water supplies is a reason to public health concern. This study investigated the occurrence of Aeromonas in samples from collective reservoirs and wells used as drinking water sources in a peri-urban area. A total of 35 water samples were collected from collective reservoirs and 32 from wells bimonthly, from September 2007 to September 2008. Aeromonas spp determination was carried out using a Multiple-Tube Technique. Samples were inoculated into alkaline peptone water and the superficial film formed was transferred to blood agar plates amended with ampicillin. Typical Aeromonas colonies were submitted to a biochemical screening and then to biochemical tests for species differentiation. Aeromonas was detected in 13 (19%) of the 69 samples examined (6 from collective reservoirs and 7 from wells). Concentrations of Aeromonas in collective reservoirs ranged from <0.3 to 1.2 x10²MPN/100mL and, in wells, from <0.3 to 2.4 x10²MPN/100mL. The most frequent specie in the collective reservoir samples was Aeromonas spp (68%), followed by A. encheleia (14%) and A. allosaccharophila (8%) and A. hydrophila (8%). Aeromonas spp (87%) was the most frequent specie isolated from well samples, followed by A. allosacchariphila (8%), A. encheleia (2%) and A. jandaei (5%). These data show the presence and diversity of Aeromonas genus in the samples analyzed and highlight that its presence in drinking water poses a significant public health concern.
Resumo:
In long-term oral rehabilitation treatments, resistance of provisional crowns is a very important factor, especially in cases of an extensive edentulous distal space. The aim of this laboratorial study was to evaluate an acrylic resin cantilever-type prosthesis regarding the flexural strength of its in-balance portion as a function of its extension variation and reinforcement by two types of fibers (glass and polyaramid), considering that literature is not conclusive on this subject. Each specimen was composed by 3 total crowns at its mesial portion, each one attached to an implant component (abutment), while the distal portion (cantilever) had two crowns. Each specimen was constructed by injecting acrylic resin into a two-part silicone matrix placed on a metallic base. In each specimen, the crowns were fabricated with either acrylic resin (control group) or acrylic resin reinforced by glass (Fibrante, Angelus) or polyaramide (Kevlar 49, Du Pont) fibers. Compression load was applied on the cantilever, in a point located 7, 14 or 21 mm from the distal surface of the nearest crown with abutment, to simulate different extensions. The specimen was fixed on the metallic base and the force was applied until fracture in a universal test machine. Each one of the 9 sub-groups was composed by 10 specimens. Flexural strength means (in kgf) for the distances of 7, 14 and 21 mm were, respectively, 28.07, 8.27 and 6.39 for control group, 31.89, 9.18 and 5.16 for Kevlar 49 and 30.90, 9.31 and 6.86 for Fibrante. Data analysis ANOVA showed statistically significant difference (p<0.05) only regarding cantilever extension. Tukey's test detected significantly higher flexural strength for the 7 mm-distance, followed by 14 and 21 mm. Fracture was complete only on specimens of non-reinforced groups.
Resumo:
The present work describes non-conventional sisal (Agave sisalana) chemical (organosolv) pulp from residues of cordage as reinforcement to cement based materials. Sisal organosolv pulp was produced in a 1:1 ethanol/water mixture and post chemically and physically characterized in order to compare its properties with sisal kraft pulp. Cement based composites reinforced with organosolv or kraft pulps and combined with polypropylene (PP) fibres were produced by the slurry de-watering and pressing method as a crude simulation of the Hatschek process. Composites were evaluated at 28 days of age, after exposition to accelerated carbonation and after 100 soak/dry cycles. Composites containing organosolv pulp presented lower mechanical strength, water absorption and apparent porosity than composites reinforced with kraft pulp. The best mechanical performance after ageing was also achieved by samples reinforced with kraft pulp. The addition of PP fibres favoured the maintenance of toughness after ageing. Accelerated carbonation promoted the densification of the composites reinforced with sisal organosolv + PP fibres.
Resumo:
The objective of this paper was to assess bacteriological quality of drinking water in a peri-urban area located in the Metropolitan Region of São Paulo, Brazil. A total of 89 water samples were collected from community plastic tanks and 177 water samples from wells were collected bimonthly, from September 2007 to November 2008, for evaluating bacteriological parameters including: Escherichia coli, Enterococcus and heterotrophic plate count (HPC). Clostridium perfringens was investigated in a subsample (40 samples from community plastic tank and 40 from wells). E. coli was present in 5 (5.6%) samples from community plastic tanks (2.0 - 5.1x10(4) MPN/100mL) and in 70 (39.5%) well samples (2.0 - 8.6x10(4) MPN/100mL). Thus, these samples were not in accordance with the Brazilian Regulation. Enterococcus was detected in 20 (22.5%) samples of the community plastic tanks (1 to 79 NC/100mL) and in 142 (80.2%) well samples (1 to >200 NC/100mL). C. perfringens was detected in 5 (12.5%) community plastic tanks samples and in 35 (87.5%) wells samples (2.2 to >16 MPN/100mL). HPC were above 500 CFU/mL in 5 (5.6%) waters from community plastic tanks. In wells samples, the HPC ranged from <1 to 1.6x10(4) CFU/mL. The residual chlorine did not attend the standard established in the drinking water legislation (0.2 mg/L), except in 20 (22.5%) samples. These results confirm the vulnerability of the water supply systems in this peri-urban area what is clearly a public health concern.
Resumo:
Aims: Surgical staple line dehiscence usually leads to severe complications. Several techniques and materials have been used to reinforce this stapling and thus reduce the related complications. The objective was to compare safety of two types of anastomotic reinforcement in open gastric bypass. Methods: A prospective, randomized study comparing an extraluminal suture, fibrin glue, and a nonpermanent buttressing material, Seamguard (R), for staple line reinforcement. Fibrin glue was excluded from the study and analysis after two leaks, requiring surgical reintervention, antibiotic therapy, and prolonged patient hospitalization. Results: Twenty patients were assigned to the suture and Seamguard reinforcement groups. The groups were similar in terms of preoperative characteristics. No staple line dehiscence occurred in the two groups, whereas two cases of dehiscence occurred in the fibrin glue group. No mortality occurred and surgical time was statistically similar for both techniques. Seamguard made the surgery more expensive. Conclusion: In our service, staple line reinforcement in open bariatric surgery with oversewing or Seamguard was considered to be safe. Seamguard application was considered to be easier than oversewing, but more expensive.
Resumo:
Brazil has a well established ethanol production program based on sugarcane. Sugarcane bagasse and straw are the main by-products that may be used as reinforcement in natural fiber composites. Current work evaluated the influence of fiber insertion within a polypropylene (PP) matrix by tensile, TGA and DSC measurements. Thus, the mechanical properties, weight loss, degradation, melting and crystallization temperatures, heat of melting and crystallization and percentage of crystallinity were attained. Fiber insertion in the matrix improved the tensile modulus and changed the thermal stability of composites (intermediary between neat fibers and PP). The incorporation of natural fibers in PP promoted also apparent T(c) and Delta H(c) increases. As a Conclusion, the fibers added to polypropylene increased the nucleating ability, accelerating the crystallization process, improving the mechanical properties and consequently the fiber/matrix interaction.
Resumo:
The aim of this study was to evaluate the potential of the fibrous material obtained from ethanol-water fractionation of bagasse as reinforcement of thermoplastic starches in order to improve their mechanical properties. The composites were elaborated using matrices of corn and cassava starches plasticized with 30 wt%glycerin. The mixtures (0,5,10 and 15 wt% bagasse fiber) were elaborated in a rheometer at 150 degrees C. The mixtures obtained were pressed on a hot plate press at 155 degrees C. The test specimens were obtained according to ASTM D638. Tensile tests, moisture absorption tests for 24 days (20-23 degrees C and 53% RH, ASTM E104), and dynamic-mechanical analyses (DMA) in tensile mode were carried out. Images by scanning electron microscopy (SEM) and X-ray diffraction were obtained. Fibers (10 wt% bagasse fiber) increased tensile strength by 44% and 47% compared to corn and cassava starches, respectively. The reinforcement (15 wt% bagasse fiber) increased more than fourfold the elastic modulus on starch matrices. The storage modulus at 30 C (E(30 degrees C)`) increased as the bagasse fiber content increased, following the trend of tensile elastic modulus. The results indicate that these fibers have potential applications in the development of biodegradable composite materials. (c) 2011 Elsevier B.V. All rights reserved.
Resumo:
This paper presents the results of a research on direct drinking water treatment through an ultrafiltration pilot plant unit using spiral-wound membranes (3500 MWCO). The source of water is the Guarapiranga Reservoir, an eutrophicated water body located in the metropolitan region of Sao Paulo, Brazil. The data were collected during a period of almost 3400 h, from August 2005 to January 2006. The main objective of the study was to evaluate the membrane production capacity and contaminant removal efficiency. It was verified that the system was able to produce a high quality permeate with a flow close to the specified by the membrane manufacturer. The average permeate flow was 19.7 L.h(-1).m(-2), at 467 kPa and 25 degrees C, with a global water recovery of almost 85%. The removal efficiencies for TOC, UV light absorption, and turbidity were 85%, 56%, and 95%, respectively. The results provide substantial evidence of the technical feasibility of spiral-wound UF membranes for direct drinking water treatment from euthrophicated sources, as an alternative for conventional drinking water treatment systems.