3 resultados para Regressão de Cox

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We tested if modulation in mRNA expression of cyclooxygenase isoforms (COX-1 and COX-2) can be related to protective effects of phototherapy in skeletal muscle. Thirty male Wistar rats were divided into five groups receiving either one of four laser doses (0.1, 0.3, 1.0 and 3.0 J) or a no-treatment control group. Laser irradiation (904 nm, 15 mW average power) was performed immediately before the first contraction for treated groups. Electrical stimulation was used to induce six tetanic tibial anterior muscle contractions. Immediately after sixth contraction, blood samples were collected to evaluate creatine kinase activity and muscles were dissected and frozen in liquid nitrogen to evaluate mRNA expression of COX-1 and COX-2. The 1.0 and 3.0 J groups showed significant enhancement (P < 0.01) in total work performed in six tetanic contractions compared with control group. All laser groups, except the 3.0 J group, presented significantly lower post-exercise CK activity than control group. Additionally, 1.0 J group showed increased COX-1 and decreased COX-2 mRNA expression compared with control group and 0.1, 0.3 and 3.0 J laser groups (P < 0.01). We conclude that pre-exercise infrared laser irradiation with dose of 1.0 J enhances skeletal muscle performance and decreases post-exercise skeletal muscle damage and inflammation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nonsteroidal antiinflammatory drugs (NSAIDs) have been shown to reduce cell growth in several tumors. Among these possible antineoplastic drugs are cyclooxygenase-2 (COX-2)-selective drugs, such as celecoxib, in which antitumoral mechanisms were evaluated in rats bearing Walker-256 (W256) tumor. W256 carcinosarcoma cells were inoculated subcutaneously (10(7) cells/rat) in rats submitted to treatment with celecoxib (25 mg kg(-1)) or vehicle for 14 days. Tumor growth, body-weight gain, and survival data were evaluated. The mechanisms, such as COX-2 expression and activity, oxidative stress, by means of enzymes and lipoperoxidation levels, and apoptosis mediators were also investigated. A reduction in tumor growth and an increased weight gain were observed. Celecoxib provided a higher incidence of survival compared with the control group. Cellular effects are probably COX-2 independent, because neither enzyme expression nor its activity, measured by tumoral PGE(2), showed significant difference between groups. It is probable that this antitumor action is dependent on an apoptotic way, which has been evaluated by the expression of the antiapoptotic protein Bcl-xL, in addition to the cellular changes observed by electronic microscopy. Celecoxib has also a possible involvement with redox homeostasis, because its administration caused significant changes in the activity of oxidative enzymes, such as catalase and superoxide dismutase. These results confirm the antitumor effects of celecoxib in W256 cancer model, contributing to elucidating its antitumoral mechanism and corroborating scientific literature about its effect on other types of cancer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development of septic shock is a common and frequently lethal consequence of gram-negative infection. Mediators released by lung macrophages activated by bacterial products such as lipopolysaccharide (LPS) contribute to shock symptoms. We have shown that insulin downregulates LPS-induced TNF production by alveolar macrophages (AMs). In the present study, we investigated the effect of insulin on the LPS-induced production of nitric oxide (NO) and prostaglandin (PG)-E(2), on the expression of inducible nitric oxide synthase ( iNOS) and cyclooxygenase (COX)-2, and on nuclear factor kappa B (NF-kappa B) activation in AMs. Resident AMs from male Wistar rats were stimulated with LPS (100 ng/mL) for 30 minutes. Insulin (1 mU/mL) was added 10 min before LPS. Enzymes expression, NF-kappa B p65 activation and inhibitor of kappa B (I-kappa B) a phosphorylation were assessed by immunobloting; NO by Griess reaction and PGE(2) by enzyme immunoassay (EIA). LPS induced in AMs the expression of iNOS and COX-2 proteins and production of NO and PGE(2), and, in parallel, NF-kappa B p65 activation and cytoplasmic I-kappa B alpha phosphorylation. Administration of insulin before LPS suppressed the expression of iNOS and COX-2, of NO and PGE(2) production and Nuclear NF-kappa B p65 activation. Insulin also prevented cytoplasmic I-kappa Ba phosphorylation. These results show that in AMs stimulated by LPS, insulin prevents nuclear translocation of NF-kappa B, possibly by blocking I-kappa Ba degradation, and supresses the production of NO and PGE(2), two molecules that contribute to septic shock. Copyright (C) 2008 S. Karger AG, Basel.