12 resultados para Recycling endosome

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A method for the determination of volatile organic compounds (VOCs) in recycled polyethylene terephthalate and high-density polyethylene using headspace sampling by solid-phase microextraction and gas chromatography coupled to mass spectrometry detection is presented. This method was used to evaluate the efficiency of cleaning processes for VOC removal from recycled PET. In addition, the method was also employed to evaluate the level of VOC contamination in multilayer packaging material containing recycled HDPE material. The optimisation of the extraction procedure for volatile compounds was performed and the best extraction conditions were found using a 75 mu m carboxen-polydimethylsiloxane (CAR-PDMS) fibre for 20 min at 60 degrees C. The validation parameters for the established method were linear range, linearity, sensitivity, precision (repeatability), accuracy (recovery) and detection and quantification limits. The results indicated that the method could easily be used in quality control for the production of recycled PET and HDPE. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

For proper management of wastes and their possible recycling as raw materials, complete characterization of the materials is necessary to evaluate the main scientific aspects and potential applications. The current paper presents a detailed scientific study of different Brazilian sugar cane bagasse ashes from the cogeneration industry as alternative cementing materials (active addition) for cement manufacture. The results show that the ashes from the industrial process (filter and bottom ones) present different chemical and mineralogical compositions and pozzolanic properties as well. As a consequence of its nature, the kinetic rate constant (K) states that the pozzolanic activity is null for the bottom ash and very low for the filter ash with respect to a sugar cane bagasse ash obtained in the laboratory under controlled burning conditions (reference). The scarce pozzolanic activity showed by ashes could be related to a possible contamination of bagasse wastes (with soils) before their use as alternative combustibles. For this reason, an optimization process for these wastes is advisable, if the ashes are to be used as pozzolans. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

[1] This work examines the main sources of moisture over Central Brazil and La Plata Basin during the year through a new Lagrangian diagnosis method which identifies the humidity contributions to the moisture budget over a region. This methodology computes budgets of evaporation minus precipitation by calculating changes in the specific humidity along back-trajectories for the previous 10 d. The origin of all air masses residing over each region was tracked during a period of 5 years (2000-2004). These regions were selected because they coincide with two centers of action of a known dipole precipitation variability mode observed in different temporal scales (from intra seasonal up to inter decadal timescales) and are related to the climatic variability of the South American Monsoon System. The results suggested the importance of the tropical south Atlantic as a moisture source for Central Brazil, and of recycling for La Plata basin. It seems that the Tropical South Atlantic plays an important role as a moisture source for Central Brazil and La Plata basin along the year, particularly during the austral summer. The north Atlantic is also an additional source for both regions during the austral summer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Filamentous fungi and yeasts associated with the marine algae Adenocystis utricularis, Desmarestia anceps, and Palmaria decipiens from Antarctica were studied. A total of 75 fungal isolates, represented by 27 filamentous fungi and 48 yeasts, were isolated from the three algal species and identified by morphological, physiological, and sequence analyses of the internal transcribed spacer region and D1/D2 variable domains of the large-subunit rRNA gene. The filamentous fungi and yeasts obtained were identified as belonging to the genera Geomyces, Antarctomyces, Oidiodendron, Penicillium, Phaeosphaeria, Aureobasidium, Cryptococcus, Leucosporidium, Metschnikowia, and Rhodotorula. The prevalent species were the filamentous fungus Geomyces pannorum and the yeast Metschnikowia australis. Two fungal species isolated in our study, Antarctomyces psychrotrophicus and M. australis, are endemic to Antarctica. This work is the first study of fungi associated with Antarctic marine macroalgae, and contributes to the taxonomy and ecology of the marine fungi living in polar environments. These fungal species may have an important role in the ecosystem and in organic matter recycling.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The evolution of the digestive system in the Order Orthoptera is disclosed from the study of the morphophysiology of the digestive process in its major taxa. This paper deals with a cricket representing the less known suborder Ensifera Most amylase and trypsin activities occur in crop and caeca. respectively. Maltase and aminopeptidase are found in soluble and membrane-bound forms in caeca, with aminopeptidase also occurring in ventriculus. Amaranth was orally fed to Gryllodes sigillatus adults or injected into their haemolymph. The experiments were performed with starving and feeding insects with identical results. Following feeding of the dye the luminal side of the most anterior ventriculus (and in lesser amounts the midgut caeca) became heavily stained. In injected insects, the haemal side of the most posterior ventriculus was stained This suggested that the anterior ventriculus is the main site of water absorption (the caeca is a secondary one). whereas the posterior ventriculus secretes water into the gut. Thus, a putative counter-current flux of fluid from posterior to anterior ventriculus may propel digestive enzyme recycling. This was confirmed by the finding that digestive enzymes are excreted at a low rate. The fine structure of midgut caeca and ventriculus cells revealed that they have morphological features that may be related to their involvement in secretion (movement from cell to lumen) and absorption (movement from lumen to cell) of fluids. Furthermore, morphological data showed that both merocrine and apocrine secretory mechanisms occur in midgut cells. The results showed that cricket digestion differs from that in grasshopper in having (1) more membrane-bound digestive enzymes; (2) protein digestion slightly displaced toward the ventriculus; (3) midgut fluxes, and hence digestive enzyme recycling, in both starved and fed insects. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Leaves comprise most of the vegetative body of tank bromeliads and are usually subjected to strong longitudinal gradients. For instance, while the leaf base is in contact with the water accumulated in the tank, the more light-exposed middle and upper leaf sections have no direct access to this water reservoir. Therefore, the present study attempted to investigate whether different leaf portions of Guzmania monostachia, a tank-forming C(3)-CAM bromeliad, play distinct physiological roles in response to water shortage, which is a major abiotic constraint in the epiphytic habitat. Internal and external morphological features, relative water content, pigment composition and the degree of CAM expression were evaluated in basal, middle and apical leaf portions in order to allow the establishment of correlations between the structure and the functional importance of each leaf region. Results indicated that besides marked structural differences, a high level of functional specialization is also present along the leaves of this bromeliad. When the tank water was depleted, the abundant hydrenchyma of basal leaf portions was the main reservoir for maintaining a stable water status in the photosynthetic tissues of the apical region. In contrast, the CAM pathway was intensified specifically in the upper leaf section, which is in agreement with the presence of features more suitable for the occurrence of photosynthesis at this portion. Gas exchange data indicated that internal recycling of respiratory CO(2) accounted for virtually all nighttime acid accumulation, characterizing a typical CAM-idling pathway in the drought-exposed plants. Altogether, these data reveal a remarkable physiological complexity along the leaves of G. monostachia, which might be a key adaptation to the intermittent water supply of the epiphytic niche. (C) 2009 Elsevier GmbH. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A survey of existing data suggests that trophoblast cells produce factors involved in extracellular matrix degradation. In this study, we correlated the expression of cathepsins D and B in the murine ectoplacental cone with the ultrastructural progress of decidual invasion by trophoblast cells. Both proteases were immunolocalized at implantation sites in lysosome-endosome-like compartments of trophoblast giant cells. Cathepsin D, but not cathepsin B, was also detected ultrastructurally in extracellular compartments surrounded by processes of the invading trophoblast containing extracellular matrix components and endometrial cell debris. The expression of cathepsins D and B by trophoblast cells was confirmed by RT-PCR in ectoplacental cones isolated from implantation chambers at gestation day 7.5. Our data addressed a positive relationship between the expression and presence of cathepsin D at the extracellular compartment of the maternal-fetal interface and the invasiveness of the trophoblast during the postimplantation period, suggesting a participation of invading trophoblast cells in the cathepsin D release. Such findings indicate that mouse trophoblast cells might exhibit a proteolytic ability to partake in the decidual invasion process at the maternal-fetal interface. Copyright (C) 2010 S. Karger AG, Basel

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Here we present the catalytic hydrogenation of polycyclic aromatic hydrocarbons (PAHs) to less toxic mixtures of saturated and partial unsaturated polycyclic hydrocarbons under mild reaction conditions using a magnetically recoverable rhodium catalyst and molecular hydrogen as the exclusive H source. The catalyst is easily recovered after each reaction by placing a permanent magnet on the reactor wall and it can be reused in successive runs without any significant loss of catalytic activity. As an example, anthracene was totally converted into the saturated polycyclic hydrocarbon form (ca. 60%) and the partially hydrogenated form, 1,2,3,4,5,6,7,8-octahydroanthracene (ca. 40%). The catalyst operates in a broad range of temperature and H(2) pressure in both organic and aqueous/organic solutions of anthracene and it also exhibits significant activity at low substrate concentrations (20 ppm). This can be an efficient recycling process for hydrogenation of PAHs present in contaminated fluid waste streams. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We here report the first magnetically recoverable Rh(0) nanoparticle-supported catalyst with extraordinary recovery and recycling properties. Magnetic separation has been suggested as a very promising technique to improve recovery of metal-based catalysts in liquid-phase batch reactions. The separation method is significantly simple, as it does not require filtration, decantation, centrifugation, or any other separation technique thereby, overcoming traditional time- and solvent-consuming procedures. Our new magnetically separable catalytic system, comprised of Rh nanoparticles immobilized on silica-coated magnetite nanoparticles, is highly active and could be reused for up to 20 times for hydrogenation of cyclohexene (180,000 mol/mol(Rh)) and benzene (11,550 mol/mol(Rh) under mild conditions. (c) 2007 Elsevier B. V. All fights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we present a study about the influence of the porphyrin metal center and mesa ligands on the biological effects of meso-tetrakis porphyrins. Different from the cationic meso-tetrakis 4-N-methyl pyridinium (Mn(III)TMPyP), the anionic Mn(III) meso-tetrakis (para-sulfonatophenyl) porphyrin (Mn(III)TPPS4) exhibited no protector effect against Fe(citrate)-induced lipid oxidation. Mn(III)TPPS4 did not protect mitochondria against endogenous hydrogen peroxide and only delayed the swelling caused by tert-BuOOH and Ca(2+). Fe(III)TPPS4 exacerbated the effect of the tert-BuOOH, and both porphyrins did not significantly affect Fe(II)citrate-induced swelling. Consistently, Fe(III)TPPS4 predominantly promotes the homolytic cleavage of peroxides and exhibits catalytic efficiency ten-fold higher than Mn(III)TPPS4. For Mn(III)TPPS4, the microenvironment of rat liver mitochondria favors the heterolytic cleavage of peroxides and increases the catalytic efficiency of the manganese porphyrin due to the availability of axial ligands for the metal center and reducing agents such as glutathione (GSH) and proteins necessary for Compound II (oxomanganese IV) recycling to the initial Mn(III) form. The use of thiol reducing agents for the recycling of Mn(III)TPPS4 leads to GSH depletion and protein oxidation and consequent damages in the organelle. (C) 2009 Elsevier Ireland Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The pentrophic membrane (PM) is an anatomical structure surrounding the food bolus in most insects. Rejecting the idea that PM has evolved from coating mucus to play the same protective role as it, novel functions were proposed and experimentally tested. The theoretical principles underlying the digestive enzyme recycling mechanism were described and used to develop an algorithm to calculate enzyme distributions along the midgut and to infer secretory and absorptive sites. The activity of a Spodoptera frugiperda microvillar aminopeptidase decreases by 50% if placed in the presence of midgut contents. S. frugiperda trypsin preparations placed into dialysis bags in stirred and unstirred media have activities of 210 and 160%, respectively, over the activities of samples in a test tube. The ectoperitrophic fluid (EF) present in the midgut caeca of Rhynchosciara americana may be collected. If the enzymes restricted to this fluid are assayed in the presence of PM contents (PMC) their activities decrease by at least 58%. The lack of PM caused by calcofluor feeding impairs growth due to an increase in the metabolic cost associated with the conversion of food into body mass. This probably results from an increase in digestive enzyme excretion and useless homeostatic attempt to reestablish destroyed midgut gradients. The experimental models support the view that PM enhances digestive efficiency by: (a) prevention of non-specific binding of undigested material onto cell Surface; (b) prevention of excretion by allowing enzyme recycling powered by an ectoperitrophic counterflux of fluid; (c) removal from inside PM of the oligomeric molecules that may inhibit the enzymes involved in initial digestion; (d) restriction of oligomer hydrolases to ectoperitrophic space (ECS) to avoid probable partial inhibition by non-dispersed undigested food. Finally,PM functions are discussed regarding insects feeding on any diet. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Shwachman-Bodian-Diamond syndrome protein (SBDS) is a member of a highly conserved protein family of not well understood function, with putative orthologues found in different organisms ranging from Archaea, yeast and plants to vertebrate animals. The yeast orthologue of SBDS, Sdo1p, has been previously identified in association with the 60S ribosomal subunit and is proposed to participate in ribosomal recycling. Here we show that Sdo1p interacts with nucleolar rRNA processing factors and ribosomal proteins, indicating that it might bind the pre-60S complex and remain associated with it during processing and transport to the cytoplasm. Corroborating the protein interaction data, Sdo1p localizes to the nucleus and cytoplasm and co-immunoprecipitates precursors of 60S and 40S subunits, as well as the mature rRNAs. Sdo1p binds RNA directly, suggesting that it may associate with the ribosomal subunits also through RNA interaction. Copyright (C) 2009 John Wiley & Sons, Ltd.