33 resultados para Real-world process
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Cooling towers are widely used in many industrial and utility plants as a cooling medium, whose thermal performance is of vital importance. Despite the wide interest in cooling tower design, rating and its importance in energy conservation, there are few investigations concerning the integrated analysis of cooling systems. This work presents an approach for the systemic performance analysis of a cooling water system. The approach combines experimental design with mathematical modeling. An experimental investigation was carried out to characterize the mass transfer in the packing of the cooling tower as a function of the liquid and gas flow rates, whose results were within the range of the measurement accuracy. Then, an integrated model was developed that relies on the mass and heat transfer of the cooling tower, as well as on the hydraulic and thermal interactions with a heat exchanger network. The integrated model for the cooling water system was simulated and the temperature results agree with the experimental data of the real operation of the pilot plant. A case study illustrates the interaction in the system and the need for a systemic analysis of cooling water system. The proposed mathematical and experimental analysis should be useful for performance analysis of real-world cooling water systems. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Using the network random generation models from Gustedt (2009)[23], we simulate and analyze several characteristics (such as the number of components, the degree distribution and the clustering coefficient) of the generated networks. This is done for a variety of distributions (fixed value, Bernoulli, Poisson, binomial) that are used to control the parameters of the generation process. These parameters are in particular the size of newly appearing sets of objects, the number of contexts in which new elements appear initially, the number of objects that are shared with `parent` contexts, and, the time period inside which a context may serve as a parent context (aging). The results show that these models allow to fine-tune the generation process such that the graphs adopt properties as can be found in real world graphs. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Complex networks obtained from real-world networks are often characterized by incompleteness and noise, consequences of imperfect sampling as well as artifacts in the acquisition process. Because the characterization, analysis and modeling of complex systems underlain by complex networks are critically affected by the quality and completeness of the respective initial structures, it becomes imperative to devise methodologies for identifying and quantifying the effects of the sampling on the network structure. One way to evaluate these effects is through an analysis of the sensitivity of complex network measurements to perturbations in the topology of the network. In this paper, measurement sensibility is quantified in terms of the relative entropy of the respective distributions. Three particularly important kinds of progressive perturbations to the network are considered, namely, edge suppression, addition and rewiring. The measurements allowing the best balance of stability (smaller sensitivity to perturbations) and discriminability (separation between different network topologies) are identified with respect to each type of perturbation. Such an analysis includes eight different measurements applied on six different complex networks models and three real-world networks. This approach allows one to choose the appropriate measurements in order to obtain accurate results for networks where sampling bias cannot be avoided-a very frequent situation in research on complex networks.
Resumo:
When modeling real-world decision-theoretic planning problems in the Markov Decision Process (MDP) framework, it is often impossible to obtain a completely accurate estimate of transition probabilities. For example, natural uncertainty arises in the transition specification due to elicitation of MOP transition models from an expert or estimation from data, or non-stationary transition distributions arising from insufficient state knowledge. In the interest of obtaining the most robust policy under transition uncertainty, the Markov Decision Process with Imprecise Transition Probabilities (MDP-IPs) has been introduced to model such scenarios. Unfortunately, while various solution algorithms exist for MDP-IPs, they often require external calls to optimization routines and thus can be extremely time-consuming in practice. To address this deficiency, we introduce the factored MDP-IP and propose efficient dynamic programming methods to exploit its structure. Noting that the key computational bottleneck in the solution of factored MDP-IPs is the need to repeatedly solve nonlinear constrained optimization problems, we show how to target approximation techniques to drastically reduce the computational overhead of the nonlinear solver while producing bounded, approximately optimal solutions. Our results show up to two orders of magnitude speedup in comparison to traditional ""flat"" dynamic programming approaches and up to an order of magnitude speedup over the extension of factored MDP approximate value iteration techniques to MDP-IPs while producing the lowest error of any approximation algorithm evaluated. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Os sistemas biológicos são surpreendentemente flexíveis pra processar informação proveniente do mundo real. Alguns organismos biológicos possuem uma unidade central de processamento denominada de cérebro. O cérebro humano consiste de 10(11) neurônios e realiza processamento inteligente de forma exata e subjetiva. A Inteligência Artificial (IA) tenta trazer para o mundo da computação digital a heurística dos sistemas biológicos de várias maneiras, mas, ainda resta muito para que isso seja concretizado. No entanto, algumas técnicas como Redes neurais artificiais e lógica fuzzy tem mostrado efetivas para resolver problemas complexos usando a heurística dos sistemas biológicos. Recentemente o numero de aplicação dos métodos da IA em sistemas zootécnicos tem aumentado significativamente. O objetivo deste artigo é explicar os princípios básicos da resolução de problemas usando heurística e demonstrar como a IA pode ser aplicada para construir um sistema especialista para resolver problemas na área de zootecnia.
Resumo:
The conventional approach to simple quantum chemistry models is contrasted with that known as momentum representation, where the wavefunctions are momentum dependent. Since the physical interactions are the same, state energies should not change, and whence the energy differences correlating with the real world as spectral lines or bands. We emphasize that one representation is not more fundamental than the other, and the choice is a matter of mathematical convenience. As spatial localization is rooted in our brains, to think in terms of the momentum present us a great mental challenge that can lead to complementary perspectives of a model.
Resumo:
A network can be analyzed at different topological scales, ranging from single nodes to motifs, communities, up to the complete structure. We propose a novel approach which extends from single nodes to the whole network level by considering non-overlapping subgraphs (i.e. connected components) and their interrelationships and distribution through the network. Though such subgraphs can be completely general, our methodology focuses on the cases in which the nodes of these subgraphs share some special feature, such as being critical for the proper operation of the network. The methodology of subgraph characterization involves two main aspects: (i) the generation of histograms of subgraph sizes and distances between subgraphs and (ii) a merging algorithm, developed to assess the relevance of nodes outside subgraphs by progressively merging subgraphs until the whole network is covered. The latter procedure complements the histograms by taking into account the nodes lying between subgraphs, as well as the relevance of these nodes to the overall subgraph interconnectivity. Experiments were carried out using four types of network models and five instances of real-world networks, in order to illustrate how subgraph characterization can help complementing complex network-based studies.
Resumo:
This article focuses on the identification of the number of paths with different lengths between pairs of nodes in complex networks and how these paths can be used for characterization of topological properties of theoretical and real-world complex networks. This analysis revealed that the number of paths can provide a better discrimination of network models than traditional network measurements. In addition, the analysis of real-world networks suggests that the long-range connectivity tends to be limited in these networks and may be strongly related to network growth and organization.
Resumo:
A great part of the interest in complex networks has been motivated by the presence of structured, frequently nonuniform, connectivity. Because diverse connectivity patterns tend to result in distinct network dynamics, and also because they provide the means to identify and classify several types of complex network, it becomes important to obtain meaningful measurements of the local network topology. In addition to traditional features such as the node degree, clustering coefficient, and shortest path, motifs have been introduced in the literature in order to provide complementary descriptions of the network connectivity. The current work proposes a different type of motif, namely, chains of nodes, that is, sequences of connected nodes with degree 2. These chains have been subdivided into cords, tails, rings, and handles, depending on the type of their extremities (e.g., open or connected). A theoretical analysis of the density of such motifs in random and scale-free networks is described, and an algorithm for identifying these motifs in general networks is presented. The potential of considering chains for network characterization has been illustrated with respect to five categories of real-world networks including 16 cases. Several interesting findings were obtained, including the fact that several chains were observed in real-world networks, especially the world wide web, books, and the power grid. The possibility of chains resulting from incompletely sampled networks is also investigated.
Resumo:
Complex networks have been characterised by their specific connectivity patterns (network motifs), but their building blocks can also be identified and described by node-motifs-a combination of local network features. One technique to identify single node-motifs has been presented by Costa et al. (L. D. F. Costa, F. A. Rodrigues, C. C. Hilgetag, and M. Kaiser, Europhys. Lett., 87, 1, 2009). Here, we first suggest improvements to the method including how its parameters can be determined automatically. Such automatic routines make high-throughput studies of many networks feasible. Second, the new routines are validated in different network-series. Third, we provide an example of how the method can be used to analyse network time-series. In conclusion, we provide a robust method for systematically discovering and classifying characteristic nodes of a network. In contrast to classical motif analysis, our approach can identify individual components (here: nodes) that are specific to a network. Such special nodes, as hubs before, might be found to play critical roles in real-world networks.
Resumo:
One important issue implied by the finite nature of real-world networks regards the identification of their more external (border) and internal nodes. The present work proposes a formal and objective definition of these properties, founded on the recently introduced concept of node diversity. It is shown that this feature does not exhibit any relevant correlation with several well-established complex networks measurements. A methodology for the identification of the borders of complex networks is described and illustrated with respect to theoretical (geographical and knitted networks) as well as real-world networks (urban and word association networks), yielding interesting results and insights in both cases.
Resumo:
This paper concern the development of a stable model predictive controller (MPC) to be integrated with real time optimization (RTO) in the control structure of a process system with stable and integrating outputs. The real time process optimizer produces Optimal targets for the system inputs and for Outputs that Should be dynamically implemented by the MPC controller. This paper is based oil a previous work (Comput. Chem. Eng. 2005, 29, 1089) where a nominally stable MPC was proposed for systems with the conventional control approach where only the outputs have set points. This work is also based oil the work of Gonzalez et at. (J. Process Control 2009, 19, 110) where the zone control of stable systems is studied. The new control for is obtained by defining ail extended control objective that includes input targets and zone controller the outputs. Additional decision variables are also defined to increase the set of feasible solutions to the control problem. The hard constraints resulting from the cancellation of the integrating modes Lit the end of the control horizon are softened,, and the resulting control problem is made feasible to a large class of unknown disturbances and changes of the optimizing targets. The methods are illustrated with the simulated application of the proposed,approaches to a distillation column of the oil refining industry.
Resumo:
The traditional theory of price index numbers is based on the law of one price. But in the real world, we frequently observe the existence of an equilibrium price dispersion instead of one price of equilibrium. This article discusses the effects of price dispersion on two price indexes: the cost of living index and the consumer price index. With price dispersion and consumer searching for the lowest price, these indexes cannot be interpreted as deterministic indicators, but as stochastic indicators, and they can be biased if price dispersion is not taken into account. A measure for the bias of the consumer price index is proposed and the article ends with an estimation of the bias based on data obtained from the consumer price index calculated for the city of Sao Paulo, Brazil, from January 1988 through December 2004. The period analysed is very interesting, because it exhibits different inflationary environments: high levels and high volatility of the rates of inflation with great price dispersion until July 1994 and low and relatively stable rates of inflation with prices less dispersed after August 1994.
Resumo:
In [Haiyin Gao, Ke Wang, Fengying Wei, Xiaohua Ding, Massera-type theorem and asymptotically periodic Logistic equations, Nonlinear Analysis: Real World Applications 7 (2006) 1268-1283, Lemma 2.1] it is established that a scalar S-asymptotically to-periodic function (that is, a continuous and bounded function f : [0, infinity) -> R such that lim(t ->infinity)(f (t + omega) - f (t)) = 0) is asymptotically omega-periodic. In this note we give two examples to show that this assertion is false. (C) 2008 Elsevier Ltd. Ail rights reserved.
Resumo:
Objectives: We compared 12-month outcomes, regarding ischemic events, repeat intervention, and ST, between diabetic and nondiabetic patients treated with the Genous (TM) EPC capturing R stent (TM) during routine nonurgent percutaneous coronary intervention (PCI) using data from the multicenter, prospective worldwide e-HEALING registry. Background: Diabetic patients have an increased risk for restenosis and stent thrombosis (ST). Methods: In the 4,996 patient e-HEALING registry, 273 were insulin requiring diabetics (IRD), 963 were non-IRD (NIRD), and 3,703 were nondiabetics. The 12-month primary outcome was target vessel failure (TVF), defined as target vessel-related cardiac death or myocardial infarction (MI) and target vessel revascularization. Secondary outcomes were the composite of cardiac death, MI or target lesion revascularization (TLR), and individual outcomes including ST. Cumulative event rates were estimated with the Kaplan-Meier method and compared with a log-rank test. Results: TVF rates were respectively 13.4% in IRD, 9.0% in NIRD, and 7.9% in nondiabetics (P < 0.01). This was mainly driven by a higher mortality hazard in IRD (P < 0.001) and NIRD (P = 0.07), compared with nondiabetics. TLR rates were comparable in NIRD and nondiabetics, but significantly higher in IRD (P = 0.04). No difference was observed in ST. Conclusion: The 1-year results of the Genous stent in a real-world population of diabetics show higher TVF rates in diabetics compared with nondiabetics, mainly driven by a higher mortality hazard. IRD is associated with a significant higher TLR hazard. Definite or probable ST in all diabetic patients was comparable with nondiabetics. (J Interven Cardiol 2011;24:285-294)