4 resultados para Range ecology
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Extinction risk has not been evaluated for 96% of all described plant species. Given that the Global Strategy for Plant Conservation proposes preliminary conservation assessments of all described plant species by 2010, herbarium specimens (i.e., primary occurrence data) are increasingly being used to infer threat components from estimates of geographic range size. Nevertheless, estimates of range size based on herbarium data may be inaccurate due to collection bias associated with interspecific variation in detectability. We used data on 377 species of Bignonieae to test the hypothesis that there is a positive relationship between detectability and estimates of geographic range size derived from herbarium specimens. This relationship is expected if the proportion of the true geographic range size of a species that is documented by herbarium specimens is given by the product of the true geographic range size and the detectability of the species, assuming no relationship between true geographic range size and detectability. We developed 4 measures of detectability that can be estimated from herbarium data and examined the relationship between detectability and 2 types of estimates of geographic range size: area of occupancy and extent of occurrence. Our results from regressing estimates of extent of occurrence and area of occupancy on detectability across genera provided no support for this hypothesis. The same was true for regressions of estimated extent of occurrence on detectability across species within genera. Nevertheless, regressions of estimated area of occupancy on detectability across species within genera provided partial support for our hypothesis. We considered 3 possible explanations for this mixed outcome: violation of the assumption of no relationship between true geographic range size and detectability; the relationships between estimated geographic range size and detectability may be an artifact of a negative relationship between estimated area of occupancy and the sampling variance of detectability; detectability may have had 2 opposite effects on estimated species range sizes: one determines the proportion of the true range of a species documented by herbarium specimens and the other determines the distribution of true range size for the species actually observed with herbarium data. Our findings should help improve understanding of the potential biases incurred with the use of herbarium data.
Resumo:
Although most raptor species are found mainly in the tropics, information on their home range and spatial requirements in the Neotropics is still scarce. In this study, we used radio telemetry to evaluate the home range and the habitat use and selection of five Roadside hawks, Rupornis magnirostris (Gmelin, 1788) in a heterogeneous landscape in southeastern Brazil. The average home range size calculated using the adaptive kernel method (95% isopleth) was 126.1ha (47.4-266.7ha), but using the minimum convex polygon method (95% isopleth) it was 143.54ha (32.6-382.3ha). The roadside hawk explored a wide variety of habitats, most of them opportunistically, as suggested in the literature. Despite this, habitat quality could influence home range size and promote habitat selection. The observation of habitat use as expected, as well as the relatively small home range size, could be related to the generalist/opportunistic behaviour of the roadside hawk.
Resumo:
In this paper, we report on range use patterns of birds in relation to tropical forest fragmentation. Between 2003 and 2005, three understorey passerine species were radio-tracked in five locations of a fragmented and in two locations of a contiguous forest landscape on the Atlantic Plateau of Sao Paulo in south-eastern Brazil. Standardized ten-day home ranges of 55 individuals were used to determine influences of landscape pattern, season, species, sex and age. In addition, total observed home ranges of 76 individuals were reported as minimum measures of spatial requirements of the species. Further, seasonal home ranges of recaptured individuals were compared to examine site fidelity. Chiroxiphia caudata, but not Pyriglena leucoptera or Sclerurus scansor, used home ranges more than twice as large in the fragmented versus contiguous forest. Home range sizes of C. caudata differed in relation to sex, age, breeding status and season. Seasonal home ranges greatly overlapped in both C. caudata and in S. scansor. Our results suggest that one response by some forest bird species to habitat fragmentation entails enlarging their home ranges to include several habitat fragments, whereas more habitat-sensitive species remain restricted to larger forest patches.
Resumo:
Aim Habitat loss and climate change are two major drivers of biological diversity. Here we quantify how deforestation has already changed, and how future climate scenarios may change, environmental conditions within the highly disturbed Atlantic forests of Brazil. We also examine how environmental conditions have been altered within the range of selected bird species. Location Atlantic forests of south-eastern Brazil. Methods The historical distribution of 21 bird species was estimated using Maxent. After superimposing the present-day forest cover, we examined the environmental niches hypothesized to be occupied by these birds pre- and post-deforestation using environmental niche factor analysis (ENFA). ENFA was also used to compare conditions in the entire Atlantic forest ecosystem pre- and post-deforestation. The relative influence of land use and climate change on environmental conditions was examined using analysis of similarity and principal components analysis. Results Deforestation in the region has resulted in a decrease in suitable habitat of between 78% and 93% for the Atlantic forest birds included here. Further, Atlantic forest birds today experience generally wetter and less seasonal forest environments than they did historically. Models of future environmental conditions within forest remnants suggest generally warmer conditions and lower annual variation in rainfall due to greater precipitation in the driest quarter of the year. We found that deforestation resulted in a greater divergence of environmental conditions within Atlantic forests than that predicted by climate change. Main conclusions The changes in environmental conditions that have occurred with large-scale deforestation suggest that selective regimes may have shifted and, as a consequence, spatial patterns of intra-specific variation in morphology, behaviour and genes have probably been altered. Although the observed shifts in available environmental conditions resulting from deforestation are greater than those predicted by climate change, the latter will result in novel environments that exceed temperatures in any present-day climates and may lead to biotic attrition unless organisms can adapt to these warmer conditions. Conserving intra-specific diversity over the long term will require considering both how changes in the recent past have influenced contemporary populations and the impact of future environmental change.