8 resultados para Radar simulators

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Foram analisadas características da precipitação estimada a partir de 145.194 campos de refletividade, de um total de 827 dias entre 1998 e 2003, obtidos do Radar Meteorológico de São Paulo (RSP). Os eventos foram classificados de acordo com intensidades de precipitação; em Convectivos (EC) e Estratiformes (EE). Quanto à morfologia, cinco tipos de sistemas foram identificados; Convecção Isolada (CI), Brisa Marítima (BM), Linhas de Instabilidade (LI), Bandas Dispersas (BD) e Frentes Frias (FF). Eventos convectivos dominam na primavera e verão e estratiformes no outono e inverno. A CI e a BM tiveram maiores picos de atuação entre outubro e março enquanto as FF de abril a setembro. BD atuam durante todo o ano e as LI só não foram observadas nos meses de junho e julho. Uma comparação pontual entre a precipitação medida pela telemetria e estimada com o radar foi realizada e, mostrou haver, na maioria dos casos, um viés positivo do RSP, para acumulações de 10, 30 e 60 minutos. Com o objetivo de integrar as estimativas de precipitação do radar com as medidas da rede telemétrica, por meio de uma análise objetiva estatística, foram obtidas dos campos de precipitação do radar as estruturas das correlações espaciais em função da distância para acumulações de chuva de 15, 30, 60 e 120 minutos para os cinco tipos de sistemas precipitantes que foram caracterizados. As curvas das correlações espaciais médias de todos os eventos de precipitação de cada sistema foram ajustadas por funções polinomiais de sexta ordem. Os resultados indicam diferenças significativas na estrutura espacial das correlações entre os sistemas precipitantes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

É apresentado um estudo sobre sistemas convectivos linearmente organizados e observados por um radar meteorológico banda-C na região semi-árida do Nordeste do Brasil. São analisados três dias (27 a 29) de março de 1985, com ênfase na investigação do papel desempenhado por fatores locais e de grande escala no desenvolvimento dos sistemas. No cenário de grande escala, a área de cobertura do radar foi influenciada por um cavado de ar superior austral no dia 27 e por um vórtice ciclônico de altos níveis no dia 29. A convergência de umidade próxima à superfície favoreceu a atividade convectiva nos dias 27 e 29, enquanto que divergência de umidade próxima à superfície inibiu a atividade convectiva no dia 28. No cenário de mesoescala, foi observado que o aquecimento diurno é um fator importante para a formação de células convectivas, somando-se a ele o papel determinante da orografia na localização dos ecos. De maneira geral, as imagens de radar mostram os sistemas convectivos linearmente organizados em áreas elevadas e núcleos convectivos intensos envolvidos por uma área de precipitação estratiforme. Os resultados indicam que convergência do fluxo de umidade em grande escala e aquecimento radiativo, são fatores determinantes na evolução e desenvolvimento dos ecos na área de estudo.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

ABSTRACT Microphysical and thermodynamical features of two tropical systems, namely Hurricane Ivan and Typhoon Conson, and one sub-tropical, Catarina, have been analyzed based on space-born radar PR measurements available on the TRMM satellite. The procedure to classify the reflectivity profiles followed the Heymsfield et al (2000) and Steiner et al (1995) methodologies. The water and ice content have been calculated using a relationship obtained with data of the surface SPOL radar and PR in Rondonia State in Brazil. The diabatic heating rate due to latent heat release has been estimated using the methodology developed by Tao et al (1990). A more detailed analysis has been performed for Hurricane Catarina, the first of its kind in South Atlantic. High water content mean value has been found in Conson and Ivan at low levels and close to their centers. Results indicate that hurricane Catarina was shallower than the other two systems, with less water and the water was concentrated closer to its center. The mean ice content in Catarina was about 0.05 g kg-1 while in Conson it was 0.06 g kg-1 and in Ivan 0.08 g kg-1. Conson and Ivan had water content up to 0.3 g kg-1 above the 0ºC layer, while Catarina had less than 0.15 g kg-1. The latent heat released by Catarina showed to be very similar to the other two systems, except in the regions closer to the center.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Este trabalho faz uma análise das estimativas de teores de umidade obtidas com o método Ground Penetrating Radar (GPR) comparativamente às determinadas com os métodos Time Domain Reflectometry (TDR) e gravimétrico. Os dados foram obtidos em dois experimentos diferentes: um experimento controlado em laboratório buscando reproduzir um meio homogêneo onde foram obtidas as medidas de umidade com GPR (antenas de 1 GHz) e TDR, e outro experimento de campo onde foram obtidos dados com GPR (antenas de 200 MHz) e de amostras de solos do local. Para a obtenção das estimativas a partir do método GPR foram analisados os eventos relativos à onda de transmissão direta entre as antenas, onda refratada criticamente e onda refletida em interfaces com diferentes propriedades elétricas.O GPR mostrou-se sensível às variações de umidades presentes nos dois experimentos e apresentou boa correlação com os dados obtidos com TDR (REQM de0,007 m³m-3) e das amostras (REQM de 0,039 m³m-3).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents a new statistical algorithm to estimate rainfall over the Amazon Basin region using the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI). The algorithm relies on empirical relationships derived for different raining-type systems between coincident measurements of surface rainfall rate and 85-GHz polarization-corrected brightness temperature as observed by the precipitation radar (PR) and TMI on board the TRMM satellite. The scheme includes rain/no-rain area delineation (screening) and system-type classification routines for rain retrieval. The algorithm is validated against independent measurements of the TRMM-PR and S-band dual-polarization Doppler radar (S-Pol) surface rainfall data for two different periods. Moreover, the performance of this rainfall estimation technique is evaluated against well-known methods, namely, the TRMM-2A12 [ the Goddard profiling algorithm (GPROF)], the Goddard scattering algorithm (GSCAT), and the National Environmental Satellite, Data, and Information Service (NESDIS) algorithms. The proposed algorithm shows a normalized bias of approximately 23% for both PR and S-Pol ground truth datasets and a mean error of 0.244 mm h(-1) ( PR) and -0.157 mm h(-1)(S-Pol). For rain volume estimates using PR as reference, a correlation coefficient of 0.939 and a normalized bias of 0.039 were found. With respect to rainfall distributions and rain area comparisons, the results showed that the formulation proposed is efficient and compatible with the physics and dynamics of the observed systems over the area of interest. The performance of the other algorithms showed that GSCAT presented low normalized bias for rain areas and rain volume [0.346 ( PR) and 0.361 (S-Pol)], and GPROF showed rainfall distribution similar to that of the PR and S-Pol but with a bimodal distribution. Last, the five algorithms were evaluated during the TRMM-Large-Scale Biosphere-Atmosphere Experiment in Amazonia (LBA) 1999 field campaign to verify the precipitation characteristics observed during the easterly and westerly Amazon wind flow regimes. The proposed algorithm presented a cumulative rainfall distribution similar to the observations during the easterly regime, but it underestimated for the westerly period for rainfall rates above 5 mm h(-1). NESDIS(1) overestimated for both wind regimes but presented the best westerly representation. NESDIS(2), GSCAT, and GPROF underestimated in both regimes, but GPROF was closer to the observations during the easterly flow.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Large-scale soy agriculture in the southern Brazilian Amazon now rivals deforestation for pasture as the region`s predominant form of land use change. Such landscape-level change can have substantial consequences for local and regional hydrology, but these effects remain relatively unstudied in this ecologically and economically important region. We examined how the conversion to soy agriculture influences water balances and stormflows using stream discharge (water yields) and the timing of discharge (stream hydrographs) in small (2.5-13.5 km2) forested and soy headwater watersheds in the Upper Xingu Watershed in the state of Mato Grosso, Brazil. We monitored water yield for 1 year in three forested and four soy watersheds. Mean daily water yields were approximately four times higher in soy than forested watersheds, and soy watersheds showed greater seasonal variability in discharge. The contribution of stormflows to annual streamflow in all streams was low (< 13% of annual streamflow), and the contribution of stormflow to streamflow did not differ between land uses. If the increases in water yield observed in this study are typical, landscape-scale conversion to soy substantially alters water-balance, potentially altering the regional hydrology over large areas of the southern Amazon.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Systems of distributed artificial intelligence can be powerful tools in a wide variety of practical applications. Its most surprising characteristic, the emergent behavior, is also the most answerable for the difficulty in. projecting these systems. This work proposes a tool capable to beget individual strategies for the elements of a multi-agent system and thereof providing to the group means on obtaining wanted results, working in a coordinated and cooperative manner as well. As an application example, a problem was taken as a basis where a predators` group must catch a prey in a three-dimensional continuous ambient. A synthesis of system strategies was implemented of which internal mechanism involves the integration between simulators by Particle Swarm Optimization algorithm (PSO), a Swarm Intelligence technique. The system had been tested in several simulation settings and it was capable to synthesize automatically successful hunting strategies, substantiating that the developed tool can provide, as long as it works with well-elaborated patterns, satisfactory solutions for problems of complex nature, of difficult resolution starting from analytical approaches. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Our objective was to develop a methodology to predict soil fertility using visible near-infrared (vis-NIR) diffuse reflectance spectra and terrain attributes derived from a digital elevation model (DEM). Specifically, our aims were to: (i) assemble a minimum data set to develop a soil fertility index for sugarcane (Sarcharum officinarum L.) (SFI-SC) for biofuel production in tropical soils; (ii) construct a model to predict the SFI-SC using soil vis-NIR spectra and terrain attributes; and (iii) produce a soil fertility map for our study area and assess it by comparing it with a green vegetation index (GVI). The study area was 185 ha located in sao Paulo State, Brazil. In total, 184 soil samples were collected and analyzed for a range of soil chemical and physical properties. Their vis-NIR spectra were collected from 400 to 2500 nm. The Shuttle Radar Topographic Mission 3-arcsec (90-m resolution) DEM of the area was used to derive 17 terrain attributes. A minimum data set of soil properties was selected to develop the SFI-SC. The SFI-SC consisted of three classes: Class 1, the highly fertile soils; Class 2, the fertile soils; and Class 3, the least fertile soils. It was derived heuristically with conditionals and using expert knowledge. The index was modeled with the spectra and terrain data using cross-validated decision trees. The cross-validation of the model correctly predicted Class 1 in 75% of cases, Class 2 in 61%, and Class 3 in 65%. A fertility map was derived for the study area and compared with a map of the GVI. Our approach offers a methodology that incorporates expert knowledge to derive the SFI-SC and uses a versatile spectro-spatial methodology that may be implemented for rapid and accurate determination of soil fertility and better exploration of areas suitable for production.