2 resultados para Rad52

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oxidized bases are common types of DNA modifications. Their accumulation in the genome is linked to aging and degenerative diseases. These modifications are commonly repaired by the base excision repair (BER) pathway. Oxoguanine DNA glycosylase (OGG1) initiates BER of oxidized purine bases. A small number of protein interactions have been identified for OGG1, while very few appear to have functional consequences. We report here that OGG1 interacts with the recombination protein RAD52 in vitro and in vivo. This interaction has reciprocal functional consequences as OGG1 inhibits RAD52 catalytic activities and RAD52 stimulates OGG1 incision activity, likely increasing its turnover rate. RAD52 colocalizes with OGG1 after oxidative stress to cultured cells, but not after the direct induction of double-strand breaks by ionizing radiation. Human cells depleted of RAD52 via small interfering RNA knockdown, and mouse cells lacking the protein via gene knockout showed increased sensitivity to oxidative stress. Moreover, cells depleted of RAD52 show higher accumulation of oxidized bases in their genome than cells with normal levels of RAD52. Our results indicate that RAD52 cooperates with OGG1 to repair oxidative DNA damage and enhances the cellular resistance to oxidative stress. Our observations suggest a coordinated action between these proteins that may be relevant when oxidative lesions positioned close to strand breaks impose a hindrance to RAD52 catalytic activities.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ionizing radiation OR) imposes risks to human health and the environment. IR at low doses and low (lose rates has the potency to initiate carcinogenesis. Genotoxic environmental agents such as IR trigger a cascade of signal transduction pathways for cellular protection. In this study, using cDNA microarray technique, we monitored the gene expression profiles in lymphocytes derived from radiation-ex posed individuals (radiation workers). Physical dosimetry records on these patients indicated that the absorbed dose ranged from 0.696 to 39.088 mSv. Gene expression analysis revealed statistically significant transcriptional changes in a total of 78 genes (21 up-regulated and 57 clown-regulated) involved in several biological processes such as ubiquitin cycle (UHRF2 and PIAS1), DNA repair (LIG3, XPA, ERCC5, RAD52, DCLRE1C), cell cycle regulation/proliferation (RHOA, CABLES2, TGFB2, IL16), and stress response (GSTP1, PPP2R5A, DUSP22). Some of the genes that showed altered expression profiles in this study call be used as biomarkers for monitoring the chronic low level exposure in humans. Additionally, alterations in gene expression patterns observed in chronically exposed radiation workers reinforces the need for defining the effective radiation dose that causes immediate genetic damage as well as the long-term effects on genomic instability, including cancer.