161 resultados para REVERSED MICELLES
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Monomer free hydrogel nanoparticles (nanogels) were prepared by crosslinking preformed poly(N-vinyl-2-pyrrolidone) (PVP) entrapped in the aqueous pool of hexadecyltrimethylammonium bromide reverse micelles using the Fenton reaction. The PVP nanoparticles were spherical with a dry diameter of 27 nm. The diameter of the swollen particles was ten times higher, i.e., a swelling ratio, Q, above 900, characterizing this preparation as superabsorbent. PVP nanogel swelling was dependent on bound Fe(3+) and varied with pH and ionic strength. Nanogel deswelling by salt followed the anions lyotropic series, i.e., SCN(-) < HSO(3)(-) < NO(3)(-) < I(-) < Cl(-) < CH(3)COO(-) < CF(3)SO(3)(-). The value of Q reached 6,000 in iron-free PVP nanoparticles at low pH, making this nanogel one of the most efficient swelling systems so far described.
Resumo:
In tokamaks, an advanced plasma confinement regime has been investigated with a central hollow electric current with negative density which gives rise to non-nested magnetic surfaces. We present analytical solutions for the magnetohydrodynamic equilibria of this regime in terms of non-orthogonal toroidal polar coordinates. These solutions are obtained for large aspect ratio tokamaks and they are valid for any kind of reversed hollow current density profiles. The zero order solution of the poloidal magnetic flux function describes nested toroidal magnetic surfaces with a magnetic axis displaced due to the toroidal geometry. The first order correction introduces a poloidal field asymmetry and, consequently, magnetic islands arise around the zero order surface with null poloidal magnetic flux gradient. An analytic expression for the magnetic island width is deduced in terms of the equilibrium parameters. We give examples of the equilibrium plasma profiles and islands obtained for a class of current density profile. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3624551]
Resumo:
The existence of a reversed magnetic shear in tokamaks improves the plasma confinement through the formation of internal transport barriers that reduce radial particle and heat transport. However, the transport poloidal profile is much influenced by the presence of chaotic magnetic field lines at the plasma edge caused by external perturbations. Contrary to many expectations, it has been observed that such a chaotic region does not uniformize heat and particle deposition on the inner tokamak wall. The deposition is characterized instead by structured patterns called magnetic footprints, here investigated for a nonmonotonic analytical plasma equilibrium perturbed by an ergodic limiter. The magnetic footprints appear due to the underlying mathematical skeleton of chaotic magnetic field lines determined by the manifold tangles. For the investigated edge safety factor ranges, these effects on the wall are associated with the field line stickiness and escape channels due to internal island chains near the flux surfaces. Comparisons between magnetic footprints and escape basins from different equilibrium and ergodic limiter characteristic parameters show that highly concentrated magnetic footprints can be avoided by properly choosing these parameters. (c) 2008 American Institute of Physics.
Resumo:
A partial pseudo-ternary phase diagram has been studied for the cethyltrimethylammonium bromide/isooctane:hexanol:butanol/potassium phosphate buffer system, where the two-phase diagram consisting of the reverse micelle phase (L-2) in equilibrium with the solvent is indicated. Based on these diagrams two-phase systems of reverse micelles were prepared with different compositions of the compounds and used for extraction and recovery of two enzymes, and the percentage of enzyme recovery yield monitored. The enzymes glucose-6-phosphate dehydrogenase (G6PD) and xylose redutase (XR) obtained from Candida guilliermondii yeast were used in the extraction procedures. The recovery yield data indicate that micelles having different composition give selective extraction of enzymes. The method can thus be used to optimize enzyme extraction processes. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
The quenching of the triplet state of three n-alkyl 3-nitrophenyl ethers: 3-nitroanisol (3-NA), n-butyl 3-nitrophenyl ether (3-NB) and n-decyl 3-nitrophenyl ether (3-ND) by four aniline derivatives: aniline (AN), N,N-dimethylaniline (DMA), 2,4,6-trimethylaniline (TMA), and 4-tetradecylaniline (TDA), was investigated in aqueous micellar SDS solutions by laser flash photolysis. The transient absorption spectra for 3-NA and 3-NB reveal the formation of long-lived intermediate species in the presence of all four quenchers. while for 3-ND no amine-induced intermediates are observed. Comparison of the transient absorption spectra of the probe 3-NA in the presence of DMA in aqueous and micellar solutions shows that the intermediate species are favored by the SDS micelles. With DMA and TMA as quenchers the intermediates are suggested to be the ion radicals generated by single electron transfer from the amine to the probe in the triplet excited state. For the quenchers AN and TDA, the intermediates may be a-complexes. The relative quenching efficiencies generally decrease as the affinity of the quencher for the micellar phase (AN < DMA < TMA < TDA) increases and the mobility of the excited probe (3-NA > 2-NB) decreases. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Many peptides containing tryptophan have therapeutic uses and can be studied by their fluorescent properties. The biological activity of these peptides involves interactions with many cellular components and micelles can function as carriers inside organisms. We report results from the interaction of small peptides containing tryptophan with several microheterogeneous systems: sodium dodecyl sulphate (SDS) micelles; sodium dodecyl sulphate-poly(ethylene oxide) (SDS-PEO) aggregates; and neutral polymeric micelles. We observed that specific parameters, such as wavelength of maximum emission and fluorescence anisotropy, could be used to ascertain the occurrence of interactions. Affinity constants were determined from changes in the intensity of emission while structural modifications in rotameric conformations were verified from time-resolved measurements. Information about the location and diffusion of peptides in the microheterogeneous systems were obtained from tryptophan emission quenching experiments using N-alkylpyridinium ions. The results show the importance of electrostatic and hydrophobic effects, and of the ionization state of charged residues, in the presence of anionic and amphiphilic SDS in the microheterogeneous systems. Conformational stability of peptides is best preserved in the interaction with the neutral polymeric micelles. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Objective: To evaluate the relationship between ductus venosus Doppler findings on the day of delivery and postnatal outcomes in pregnancies with absent or reversed end-diastolic (ARED) flow in the umbilical arteries. Study design: Postnatal outcomes of 103 newborns of pregnancies with a diagnosis of ARED flow on Doppler velocimetry of the umbilical arteries were analyzed retrospectively between January 1997 and December 2004. Single pregnancies and fetuses without malformations were included. The cases were divided into two groups according to the flow during atrial contraction (a-wave) in the ductus venosus on the day of delivery: group A, 20 cases with absent or reversed flow in the ductus venosus and group B, 83 cases with positive flow. The results were analyzed statistically using the chi-square test, Fisher`s exact test and the Mann-Whitney U test with the level of significance set at 5%. Results: All newborns were delivered by cesarean section. Gestational age was similar in the two groups (group A: 30 weeks and group B: 30.9 weeks, P = 0.23). Absent or reversed ductus venosus flow was associated with the following adverse postnatal outcomes: lower birthweight (P < 0.001), lower Apgar scores in the first (P = 0.001) and fifth minute (P = 0.001), a higher frequency of orotracheal intubation (P = 0.001) and pH at birth less than 7.20 (P < 0.001), pulmonary hemorrhage (P = 0.03), thrombocytopenia (P = 0.02), hypoglycemia (P = 0.01), intracranial hemorrhage (P = 0.02), and postnatal death (P = 0.007). Conclusion: The study of ductus venosus flow may provide additional information regarding the best time for interruption of pregnancies with ARED flow in the umbilical arteries characterized by extreme prematurity. (C) 2008 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Introduction: The present study evaluated the effect of a reducing agent on the bond strength of deproteinized root canal dentin surfaces when using a self-adhesive versus dual-cured cement. Regional differences were also evaluated. Methods: A total of 45 bovine incisor roots were divided into 3 groups: irrigation with physiologic solution (control), 10-minute deproteinization with 5% NaOCl, and 10-minute deproteinization with 5% NaOCl followed by 10 minutes of 10% ascorbic acid. Fiber posts were cemented with either RelyX 0100 or RelyX ARC (with SingleBond 2 or Clearfil SE Bond). The push-out bond strength was evaluated after 24 hours of storage. Data were submitted to three-way analyses of variance and Dunnett 13 tests (alpha = 0.05). Results: No differences between cements were observed within the testing conditions, regardless of the adhesive (P < .05). Deproteinization reduced bond strengths. Subsequent treatment with ascorbic acid was capable of reversing bond strength value changes to levels similar to those of controls. Regional radicular differences were also found, where coronal > middle > apical. Conclusions: The reducing agent was capable. of reversing the effect of dentin deproteinization, and RelyX U100 behaved similarly to RelyX ARC. (J Endod 2010;36:130-134)
Resumo:
Introduction: In this study, we evaluated the influence of intrusion mechanics with accentuated and reversed curve of Spee on root resorption of the maxillary and mandibular incisors. Methods: A sample of 60 patients with Class I and Class II Division 1 malocclusions having nonextraction treatment was divided into 2 groups with the following characteristics: group 1 comprised 30 deepbite patients, treated with accentuated and reversed curve of Spee intrusion mechanics, with an initial mean age of 12.8 +/- 1.23 years (range, 10.01-15.32 years), and group 2 comprised 30 patients with normal overbite treated without intrusion mechanics, with an initial mean age of 12.87 +/- 1.43 years ( range, 10.02-15.36 years). Pretreatment and posttreatment periapical radiographs were used to evaluate root resorption. The groups were compared by using the Mann-Whitney U test. Correlation between root resorption and tooth movement was investigated with the Spearman correlation coefficient. Results: The deepbite group treated with accentuated and reversed curve of Spee had statistically greater root resorption ( 1.87) than the normal overbite group ( 1.54), at P=.017. Changes in overbite and vertical displacements of the maxillary central incisor apices had significant correlations to root resorption ( r = 0.30, P =.019; r = 0.27, P =.037, respectively). Conclusions: Accentuating and reversing the curve of Spee in the archwires to correct deep overbite causes more root resorption than nonintrusive mechanics.
Resumo:
The extensive replication of mitochondria during oogenesis and the wide variability in mitochondrial DNA ( mtDNA) copy numbers present in fully grown oocytes indicate that mtDNA amount may play an important role during early embryogenesis. Using bovine oocytes derived from follicles of different sizes to study the influence of mtDNA content on development, we showed that oocytes obtained from small follicles, known to be less competent in developing into blastocysts, contain less mtDNA than those originating from larger follicles. However, because of the high variability in copy number, a more accurate approach was examined in which parthenogenetic one-cell embryos were biopsied to measure their mtDNA content and then cultured to assess development capacity. Contrasting with previous findings, mtDNA copy number in biopsies was not different between competent and incompetent embryos, indicating that mtDNA content is not related to early developmental competence. To further examine the importance of mtDNA on development, one-cell embryos were partially depleted of their mtDNA (64% +/- 4.1% less) by centrifugation followed by the removal of the mitochondrial-enriched cytoplasmic fraction. Surprisingly, depleted embryos developed normally into blastocysts, which contained mtDNA copy numbers similar to nonmanipulated controls. Development in depleted embryos was accompanied by an increase in the expression of genes (TFAM and NRF1) controlling mtDNA replication and transcription, indicating an intrinsic ability to restore the content of mtDNA at the blastocyst stage. Therefore, we concluded that competent bovine embryos are able to regulate their mtDNA content at the blastocyst stage regardless of the copy numbers accumulated during oogenesis.
Resumo:
The paper by Yu and Saupe on the first biaxial nematic phase created excitement for a number of reasons. Some theories of biaxial phases already existed, but experimental observation was still lacking. The phase was discovered in a lyotropic system with three components, which in theory is difficult. Lyotropic liquid crystals are composed of supramolecular assemblies of amphiphilic molecules, which may change shape and size as a function of concentration and temperature. The experimental phase diagram of the lyotropic biaxial phase was rather complex, with the biaxial region inserted between nematic cylindrical and nematic discotic phases via second-order transitions. In addition, re-entrant behaviour was evident. Saupe investigated further systems experimentally, observing that the biaxial phase might be absent in cases where a direct transition between the cylindrical and discotic phases occurred. He provided a range of theoretical and experimental contributions on the properties of these lyotropics, but was very cautious regarding the detailed amphiphilic assemblies involved. The present paper reviews this area, focusing on proposals for the structure of the micellar assemblies. Emphasis is placed on recent papers which indicate a transformation of the two uniaxial shapes, in mixing conditions, both from the theoretical and the experimental point of view, and to questions still requiring further study.
Resumo:
For tokamak models using simplified geometries and reversed shear plasma profiles, we have numerically investigated how the onset of Lagrangian chaos at the plasma edge may affect the plasma confinement in two distinct but closely related problems. Firstly, we have considered the motion of particles in drift waves in the presence of an equilibrium radial electric field with shear. We have shown that the radial particle transport caused by this motion is selective in phase space, being determined by the resonant drift waves and depending on the parameters of both the resonant waves and the electric field profile. Moreover, we have shown that an additional transport barrier may be created at the plasma edge by increasing the electric field. In the second place, we have studied escape patterns and magnetic footprints of chaotic magnetic field lines in the region near a tokamak wall, when there are resonant modes due to the action of an ergodic magnetic limiter. A non-monotonic safety factor profile has been used in the analysis of field line topology in a region of negative magnetic shear. We have observed that, if internal modes are perturbed, the distributions of field line connection lengths and magnetic footprints exhibit spatially localized escape channels. For typical physical parameters of a fusion plasma, the two Lagrangian chaotic processes considered in this work can be effective in usual conditions so as to influence plasma confinement. The reversed shear effects discussed in this work may also contribute to evaluate the transport barrier relevance in advanced confinement scenarios in future tokamak experiments.
Resumo:
This paper describes the development and application of an RP HPLC method using a C(18) monolithic stationary phase for the separation and quantification of extra- and intracellular amino acids in a batch cultivation of the marine alga Tetraselmis gracilis. Fluorimetric detection was made after separation of the o-phthaldialdehyde 2-mercaptoethanol (OPA-2MCE) derivatives using a binary gradient elution. Separation of 19 amino acids was achieved with resolution >1.5 in about 39 min at a flow rate of 1.5 mL/min. RSD of analyses in seawater medium ranged from 0.36% for Orn (0.50 mu mol/L) to 12% for Ile (0.10 mu mol/L). The main constituents of the intracellular dissolved free amino acids (DFAAs) in the exponential growth phase were arginine (Arg), asparagine (Asn), alanine (Ala), aspartic acid (Asp), glutamic acid (Glu), serine (Ser), glycine (Gly), glutamine (Gln), and leucine (Leu). The major amino acids excreted to the media were valine (Val), Ala, Ser, and Gly. The monolithic phase facilitates the analysis by shortening the separation time and saving solvents and instrumentation costs (indeed conventional HPLC instrumentation can be used, running at lower pressures than those ones used with packed particle columns).
Resumo:
The rates of oximolysis of p-nitrophenyl diphenyl phosphate (PNPDPP) by Acetophenoxime; 10-phenyl-10-hydi-oxyiminodecanoic acid; 4-(9-carboxynonanyl)-1-(9-carboxy-1-hydroyiminononanyl) benzene; 1-dodecyl-2-[(hydroxyimino)methyl]-pyridinium chloride (IV) and N-methylpyridinium-2-aldoxime chloride were determined in micelles of N-hexadecyl-N,N,N-trimethylammonium chloride (CTAC), N-hexadecyl-N,N-dimethylammonium propanesulfonate and dioctadecyldimethylammonium chloride (DODAC) vesicles. The effects of CTAC micelles and DODAC vesicles on the rates of oxymolysis of O,O-Diethyl O-(4-nitrophenyl) phosphate (paraoxon) by oxime IV were also determined. Analysis of micellar and vesicular effects on oximolysis of PNPDPP, using pseudophase or pseudophase with explicit consideration of ion exchange models, required the determination of the aggregate`s effects on the pK(a), of oximes and on the rates of PNPDPP hydrolysis. All aggregates increased the rate of oximolysis of PNPDPP and the results were analyzed quantitatively. In particular, DODAC vesicles catalyzed the reaction and increased the rate of oximolysis of PNPDPP by IV several million fold at pH`s compatible with pharmaceutical formulations. The rate increase produced by DODAC vesicles on the rate of oximolysis paraoxon by IV demonstrates the pharmaceutical potential of this system, since the substrate is used as an agricultural defensive agent and the surfactant is extensively employed in cosmetic formulations. (C) 2008 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 98:1040-1052, 2009
Resumo:
The interaction between angiotensin II (AII, DRVYIHPF) and its analogs carrying 2,2,6,6-tetramethylpiperidine-1-oxyl-4-amino-4-carboxylic acid (TOAC) and detergents-negatively charged sodium dodecyl sulfate (SDS) and zwitterionic N-hexadecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate (HPS)-was examined by means of EPR, CD, and fluorescence. EPR spectra of partially active TOAC(1)-AII and inactive TOAC(3)-AII in aqueous solution indicated fast tumbling, the freedom of motion being greater at the N-terminus. Line broadening occurred upon interaction with micelles. Below SDS critical micelle concentration, broader lines indicated complex formation with tighter molecular packing than in micelles. Small changes in hyperfine splittings evinced TOAC location at the micelle-water interface. The interaction with anionic micelles was more effective than with zwitterionic micelles. Peptide-micelle interaction caused fluorescence increase. The TOAC-promoted intramolecular fluorescence quenching was more, pronounced for TOAC(3)-AII because of the proximity between the nitroxide and Tyr(4). CD spectra showed that although both AII and TOAC(1)-AII presented flexible conformations in water, TOAC(3)-AII displayed conformational restriction because of the TOAC-imposed bend (Schreier et al., Biopolymers 2004, 74, 389). In HPS, conformational changes were observed for the labeled peptides at neutral and basic pH. In SDS, all peptides underwent pH-dependent conformational changes. Although the spectra suggested similar folds for All and TOAC(1)-AII, different conformations were acquired by TOAC(3)-AII. The membrane environment has been hypothesized to shift conformational equilibria so as to stabilize the receptor-bound conformation of ligands. The fact that TOAC(3)-AII is unable to acquire conformations similar to those of native AII and partially active TOAC(1)-AII is probably the explanation for its lack of biological activity. (C) 2009 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 92: 525-537, 2009.