11 resultados para RESONANCE EFFECT
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
The aim of this study was to assess the relation between the number of free radicals generated and the polymerization depth in two different commercial brands of resin composites with different colors and translucence. Electron paramagnetic resonance quantified the radical populations through relative intensity (I (r)) of free radicals generated, and radical decay was monitored. Sample translucence and the classical polymerization depth were measured. The analysis indicated that resin with more color pigments (MA4, I (r) = 0.73 a.u) or more opacity components (ODA2, I (r) = 0.84 a.u) generated smaller populations of free radicals and have the lower polymerization depth than clearer (M, I (r) = 1.20 a.u and MA2, I (r) = 1.02) or more translucent (OEA2, I (r) = 1.00 a.u) composites for the same light-curing time. It seems that irradiation doses have to be adequate to more colored and less translucent resins.
Resumo:
The quality control optimization of medical processes that use ionizing radiation in the treatment of diseases like cancer is a key element for patient safety and success of treatment. The major medical application of radiation is radiotherapy, i.e. the delivery of dose levels to well-defined target tissues of a patient with the purpose of eliminating a disease. The need of an accurate tumour-edge definition with the purpose of preserving healthy surrounding tissue demands rigorous radiation treatment planning. Dosimetric methods are used for dose distribution mapping region of interest to assure that the prescribed dose and the irradiated region are correct. The Fricke gel (FXG) is the main dosimeter that supplies visualization of the three-dimensional (3D) dose distribution. In this work the dosimetric characteristics of the modified Fricke dosimeter produced at the Radiation Metrology Centre of the Institute of Energetic and Nuclear Research (IPEN) such as gel concentration dose response dependence, xylenol orange addition influence, dose response between 5 and 50Gy and signal stability were evaluated by magnetic resonance imaging (MRI). Using the same gel solution, breast simulators (phantoms) were shaped and absorbed dose distributions were imaged by MRI at the Nuclear Resonance Laboratory of the Physics Institute of Sao Paulo University. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
In this work, KHSO(4):Mn crystals doped with Mn and K(2)SO(4) were synthesized using an aqueous solution method. The samples were exposed to ionizing radiation in order to observe the effects on their physical properties. Raman spectroscopy was used to identify the structure of the crystals by detecting the vibrational frequencies of the crystalline lattice. Electron paramagnetic resonance (EPR) was used to study the creation of paramagnetic centers arising from exposure to ionizing radiation. This new synthesis method produces high quality K(2)SO(4) and KHSO(4):Mn crystals and allows control of structural, morphological, optical and magnetic properties. (C) 2009 Elsevier B.V. All rights reserved,
Resumo:
Lithium nitrate has been used to prevent and to mediate the expansion caused by alkali-silica reaction (ASR). However, there is limited information on how it affects the existing reaction products caused by ASR. The aim of the present work is to determine the modifications caused by the LiNO3 treatment on the structure of the gel produced by ASR. ASR gel samples obtained from a concrete dam were exposed to an aqueous solution of lithium nitrate and sodium hydroxide with molar LiNO3/NaOH = 0.74, and the resulting products were analyzed by X-ray diffraction, infrared spectroscopy, and solid-state nuclear magnetic resonance of Si-29, Na-23, and Li-7. The treatment of the gel samples produces significant structural modifications in ASR products. A new amorphous silicate compound incorporating Li+ ions is formed, with an average silicate network that can be described as linear in contrast with the layered structure of the original gel. This elimination of the layered structure after the Li-based treatments may be related to the reduction of the tendency of the gel to expand. Also, several crystalline compounds containing potassium indicate the release of this species from the original ASR gel.
Resumo:
In this work we report results from continuous-wave (CW) and pulsed electron paramagnetic resonance (EPR) and proton nuclear magnetic resonance (NMR) studies of the vanadium pentoxide xerogel V2O5:nH(2)O (n approximate to 1.6). The low temperature CW-EPR spectrum shows hyperfine structure due to coupling of unpaired V4+ electron with the vanadium nucleus. The analysis of the spin Hamiltonian parameters suggests that the V4+ ions are located in tetragonally distorted octahedral sites. The transition temperature from the rigid-lattice low-temperature regime to the high temperature liquid-like regime was determined from the analysis of the temperature dependence of the hyperfine splitting and the V4+ motional correlation time. The Electron Spin Echo Envelope Modulation (ESEEM) data shows the signals resulting from the interaction of H-1 nuclei with V4+ ions. The modulation effect was observed only for field values in the center of the EPR absorption spectrum corresponding to the single crystals orientated perpendicular to the magnetic field direction. At least three protons are identified in the xerogel by our magnetic resonance experiments: (I) the OH groups in the equatorial plane, (ii) the bound water molecules in the axial V=O bond and (iii) the free mobile water molecules between the oxide layers. Proton NMR lineshapes and spin-lattice relaxation times were measured in the temperature range between 150 K and 323 K. Our analysis indicates that only a fraction of the xerogel protons contribute to the measured conductivity.
Resumo:
A rationalization of the known difference between the (3,4)J(C4H1) and (3,4)J(C1H4) couplings transmitted mainly through the 7-bridge in norbornanone is presented in terms of the effects of hyperconjugative interactions involving the carbonyl group. Theoretical and experimental studies Of (3,4)J(CH) couplings were carried out in 3-endo- and 3-exo-X-2-norbornanone derivatives (X = Cl, Br) and in exo- and endo-2-noborneol compounds. Hyperconjugative interactions were studied with the natural bond orbital (NBO) method. Hyperconjugative interactions involving the carbonyl pi*c(2) =o and sigma*c(2) =o antibonding orbitals produce a decrease of three-bond contribution to both (3,4) J(C4H1) and (3,4)J(C1H4) couplings. However, the latter antibonding orbital also undergoes a strong sigma c(3)-c(4) ->sigma*c(2) =o interaction, which defines an additional coupling pathway for (3,4)J(C4H1) but not for (3,4)J(C1H4). This pathway is similar to that known for homoallylic couplings, the only difference being the nature of the intermediate antibonding orbital; i.e. for (3,4)J(C4H1) it is of sigma*-type, while in homoallylic couplings it is of pi*-type. Copyright (c) 2007 John Wiley & Sons, Ltd.
Resumo:
The protonation effect on the vibrational and electronic spectra of 4-aminoazobenzene and 4-(dimethylamino)azobenzene was investigated by resonance Raman spectroscopy, and the results were discussed on the basis of quantum-chemical calculations. Although this class of molecular systems has been investigated in the past concerning the azo-hydrazone tautomerism, the present work is the first to use CASSCF/CASPT2 calculations to unveil the structure of both tautomers as well the nature of the molecular orbitals involved in chromophoric moieties responsible for the resonance Raman enhancement patterns. More specifically both the resonance Raman and theoretical results show clearly that in the neutral species, the charge transfer transition involves mainly the azo moiety, whereas in the protonated forms there is a great difference, depending on the tautomer. In fact, for the azo tautomer the transition is similar to that observed in the corresponding neutral species, whereas in the hydrazone tautomer such a transition is much more delocalized due to the contribution of the quinoid structure. The characterization of protonated species and the understanding of the tautomerization mechanism are crucial for controlling molecular properties depending on the polarity and pH of the medium.
Resumo:
Benzene adsorbed on highly acidic sulfated TiO2 (S-TiO2) shows an intriguing resonance Raman (RR) effect, with excitation in the blue-violet region. There are very interesting spectral features: the preferential enhancement of the e(2g) mode (1595 cm(-1)) in relation to the a(1g) mode (ring-breathing mode at 995 cm(-1)) and the appearance of bands at 1565 and 1514 cm(-1). The band at 1565 cm(-1) is probably one of the components of the e(2g) split band, originally a doubly degenerate mode (8a, 8b) in neat benzene, and the band at 1514 cm(-1) is assigned to the 19a mode, an inactive mode in neat benzene. These facts indicate a lowering of symmetry in adsorbed benzene, which may be caused by a strong interaction between S-TiO2 and the benzene molecule with formation of a benzene to Ti (IV) charge transfer (CT) complex or by the formation of a benzene radical cation species. However, the RR spectra of the adsorbed benzene cannot be assigned to the benzene radical cation because the observed wavenumber of the ring-breathing mode does not have the value expected for this species. Moreover, it was found by ESR measurements that the amount of radicals was very low, and so it was concluded that a CT complex is the species that originates the RR spectra. The most favorable intensification of the band at 1595 cm(-1) in the RR spectra of benzene/S-TiO2 at higher excitation energy corroborates this hypothesis, as an absorption band in this energy range, assigned to a CT transition, is observed. Copyright (C) 2008 John Wiley & Sons, Ltd.
Resumo:
Nickel catalysts with a load of 5 wt.% Ni, supported on pure ZrO(2) and ZrO(2) stabilized with 4 mol%, 8 mol% and 12 mol% of Y(2)O(3), were prepared by the polymerization method. The samples were characterized by X-ray diffraction (XRD), temperature-programmed reduction with hydrogen (TPR-H(2)), specific surface area (BET) and electronic paramagnetic resonance (EPR) and tested as catalysts for carbon dioxide reforming of methane. The XRD patterns showed the presence of the oxide precursor (NiO) and the tetragonal phase of a Y(2)O(3)-ZrO(2) solid solution. According to the TPR-H(2) analysis, the reduction of various NiO species was influenced by the composition of the support. Catalytic tests were conducted at 800 degrees C for 6 h, and the composition of the gaseous products and the catalytic conversion rate depended on the composition of the Y(2)O(3)-ZrO(2) solid solution and its influence on the supported NiO species. A direct relation was observed between the variation in the support, the nickel species supported on it and the performance in the catalytic tests. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
EPR spectra of 5- and 16-doxyl stearic acid nitroxide probes (5-DSA and 16-DSA, respectively) bound to bovine serum albumin (BSA) revealed that in the presence of ionic surfactants, at least, two label populations coexist in equilibrium. The rotational correlation times (tau) indicated that component I displays a more restricted mobility state, associated to the spin labels bound to the protein; the less immobilized component 2 is due to label localization in the surfactant aggregates. For both probes, the increase of surfactant concentration leads to higher motional levels of component 1 followed by a simultaneous decrease of this fraction of nitroxides and its conversion into component 2. For 10 mM cethyltrimethylammonium chloride (CTAC), the nitroxides are 100% bound to the protein, whereas at 10mM N-hexadecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate (HPS) and sodium dodecyl sulfate (SDS) the fractions of bound nitroxides are reduced to 18% and 86%, respectively. No significant polarity changes were observed in the whole surfactant concentration range for component 1. Moreover, at higher surfactant concentration, component 2 exhibited a similar polarity as in the pure surfactant micelles. For 16-DSA the surfactant effect is different: at 10mM of HPS and CTAC the fractions of bound nitroxides are 76% and 49%, respectively, while at 10 mM SDS they are present exclusively in a micellar environment, consistent with 100% of component 2. Overall, both SDS and HPS are able to effectively displace the nitroxide probes from the protein binding sites. while CTAC seems to affect the nitroxide binding to a significantly smaller extent. (C) 2008 Elsevier B.V. All rights reserved.
Nuclear magnetic resonance water relaxation time changes in bananas during ripening: a new mechanism
Resumo:
BACKGROUND: Nuclear magnetic resonance studies of banana fragments during ripening show an increase on the water transverse relaxation time (T(2)) and a decrease in water self-diffusion coefficient (D). As T(2) and D are normally directly correlated, we studied these two properties in intact bananas during ripening, in an attempt to rule out the effect of injury on the apparent discrepancies in the behavior of T(2) and D. RESULTS: The results show that injury in bananas causes a decrease in T(2) of the water in vacuoles (T(2vac)). They also show that T(2vac) increased and D decreased during ripening, ruling out the injury effect. To explain the apparent discrepancies, we propose a new hypothesis for the increase in T(2) values, based on the reduction of Fe(3+) ions to Fe(2+) by galacturonic acid, produced by the hydrolysis of pectin and a decrease in internal oxygen concentration during ripening. CONCLUSION: As injury alters T(2) values it is necessary to use intact bananas to study relaxation times during ripening. The novel interpretation for the increase in T(2vac) based on reduction of Fe(+3) and O(2) concentration is an alternative mechanism to that based on the hydrolysis of starch in amyloplasts. (C) 2010 Society of Chemical Industry