2 resultados para Réseaux de Petri colorés
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Usually, a Petri net is applied as an RFID model tool. This paper, otherwise, presents another approach to the Petri net concerning RFID systems. This approach, called elementary Petri net inside an RFID distributed database, or PNRD, is the first step to improve RFID and control systems integration, based on a formal data structure to identify and update the product state in real-time process execution, allowing automatic discovery of unexpected events during tag data capture. There are two main features in this approach: to use RFID tags as the object process expected database and last product state identification; and to apply Petri net analysis to automatically update the last product state registry during reader data capture. RFID reader data capture can be viewed, in Petri nets, as a direct analysis of locality for a specific transition that holds in a specific workflow. Following this direction, RFID readers storage Petri net control vector list related to each tag id is expected to be perceived. This paper presents PNRD cornerstones and a PNRD implementation example in software called DEMIS Distributed Environment in Manufacturing Information Systems.
Resumo:
The vibrational spectroscopic characterization of a sulfur dioxide visual sensor was carried out using a Raman microscope system. It was observed the formation of two distinct complexes, that were characterized by the position and relative intensities of the bands assigned to the symmetric stretching, nu(s)(SO(2)),of the linked SO(2) molecules. In fact, in the yellowish orange complex, that corresponds to the 1:1 stoichiometry, only one band is observed, assigned to nu(s)(SO(2)) at ca. 1080 cm-(1) and, in the deep red complex, that corresponds to the 1:2 complex, at ca. 1070 and 1090 cm(-)1 are observed. The variation of the relative intensities of the bands assigned to nu(s)(SO(2)) present in the Ni(II)center dot SO(2) complex, in different points of the sample, shows clearly the requirement of the Raman microscope in the vibrational characterization of this kind of molecular sensor. (C) 2008 Elsevier B.V. All rights reserved.