11 resultados para Pseudomonas Putida
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
The production of PHA from plant oils by Pseudomonas species soil isolated from a sugarcane crop was evaluated. Out of 22 bacterial strains three were able to use efficiently plant oils to grow and to accumulate PHA. Pseudomonas putida and Pseudomonas aeruginosa strains produced PHA presenting differences on monomer composition compatible with variability on monomer specificity of their PHA biosynthesis system. The molar fraction of 3-hydroxydodecanoate detected in the PHA was linearly correlated to the oleic acid supplied. A non-linear relationship between the molar fractions of 3-hydroxy-6-dodecenoate (3HDd Delta(6)) detected in PHA and the linoleic acid supplied was observed, compatible with saturation in the biosynthesis system capability to channel intermediate of P-oxidation to PHA synthesis. Although P. putida showed a higher 3HDd Delta(6) yield from linoleic acid when compared to P. aeruginosa, in both species it was less than 10% of the maximum theoretical value. These results contribute to the knowledge about the biosynthesis of PHA with a controlled composition from plant oils allowing in the future establishing the production of these polyesters as tailor-made polymers. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Chlorocatechol 1,2-dioxygenase (1,2-CCD) is a non-heme iron protein involved in the intradiol cleavage of aromatic compounds that are recalcitrant to biodegradation. In particular, 1,2-CCD catalyzes the conversion of catechol and its halogenated derivatives to cis-cis muconic acid. In this study we describe a series of experiments concerning the interaction of chlorocatechol 1,2-dioxygenase from Pseudomonas putida (Pp1,2-CCD) with cis-cis muconic acid. We used single-injection ITC to show that the reaction product inhibits enzyme kinetics. DSC and EPR measurements probed whether this was accomplished by a direct binding of the product to the enzyme active site. DSC shows that cis-cis muconic acid affects the thermal unfolding of the protein and allowed us to estimate a binding constant. Furthermore, EPR spectra of the Fe(III) center demonstrate that, upon product binding, a significant decrease in resonance intensity is observed, indicating that cis-cis muconic acid binds directly to the active site. Based on the increasing interest for understanding dioxygenases mechanism of action and, moreover, how to control such process, our data indicate that the product of the reaction does play a relevant role in the catalysis and should therefore be taken into account when one thinks about ways of regulating enzyme activity. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Alkane monooxygenases (Alk) are the key enzymes for alkane degradation. In order to understand the dispersion and diversity of alk genes in Antarctic marine environments, this study analysed by clone libraries the presence and diversity of alk genes (alkB and alkM) in sediments from Admiralty Bay, King George Island, Peninsula Antarctica. The results show a differential distribution of alk genes between the sites, and the predominant presence of new alk genes, mainly in the pristine site. Sequences presented 53.10-69.60% nucleotide identity and 50.90-73.40% amino acid identity to alkB genes described in Silicibacter pomeroyi, Gordonia sp., Prauserella rugosa, Nocardioides sp., Rhodococcus sp., Nocardia farcinica, Pseudomonas putida, Acidisphaera sp., Alcanivorax borkumensis, and alkM described in Acinetobacter sp. This is the first time that the gene alkM was detected and described in Antarctic marine environments. The presence of a range of previously undescribed alk genes indicates the need for further studies in this environment.
Resumo:
Balanoposthitis is defined as the inflammation of the glans penis and its foreskin. In the presence of other underlying medical conditions, this localized infection may spread systemically, serving as a source of fever and bacteremia in neutropenic males. Two rare cases of balanoposthitis caused by a clonally related Pseudomonas aeruginosa isolate co-producing the SPM-1 metallo-beta-lactamase and the novel 16S rRNA methylase RmtD are described. Four multidrug-resistant (MDR) P. aeruginosa isolates were successively recovered from glans/foreskin swabs and urine cultures from two uncircumcised pediatric patients, one with Burkitt`s non-Hodgkin`s lymphoma and one with acute lymphoblastic leukemia. Clinically, preputial colonization by MDR P. aeruginosa evolved to severe balanoposthitis with glans/foreskin lesions as a source of fever. Combination therapy of ciprofloxacin and/or aztreonam (systemic) plus polymyxin B (topical) was effective once reversion of the neutropenic condition was achieved. Although P. aeruginosa remains an unusual cause of balanoposthitis, these cases should alert the physician to the potential pathogenicity of this bacterium. Furthermore, co-production of metallo-beta-lactamase and 16S rRNA methylase has a potential impact on the empirical management of complicated infections caused by P. aeruginosa. Crown Copyright (C) 2009 Published by Elsevier Ltd on behalf of International Society for Infectious Diseases. All rights reserved.
Resumo:
In this work, the biodegradation mechanism of phenol and sub products (such as catechol and hydroquinone) in Chromobacterium violaceum was investigated by cloning and molecular characterization of a phenol monooxygenase gene in Escherichia coli. This gene (Cvmp) is very similar (74 and 59% of similarity and identity, respectively) to the ortholog from Ralstonia eutropha, bacteria capable of utilizing phenol as the sole carbon source. The phenol biodegradation ability of E. coli recombinant strains was tested by cell-growth in a minimal medium containing phenol as the sole source of carbon and release of intermediary metabolites (catechol and hydroquinone). Interestingly, during the growth of these strains on phenol, catechol, and hydroquinone accumulated transiently in the medium. These metabolites were further analyzed by HPLC. These results indicated that phenol can be initially orto or para hydroxylated to produce cathecol or hydroquinone, respectively, followed by meta-cleavage of aromatic rings. To verify this information, the metabolites obtained from HPLC were submitted to LC/MS to confirm their chemical structure, thereby indicating that the recombinant strains utilize two different routes simultaneously, leading to different ring-fission substrates for the metabolism of phenol. (C) KSBB
Resumo:
The opportunistic pathogen Pseudomonas aeruginosa PA14 possesses four fimbrial cup clusters, which may confer the ability to adapt to different environments. cupD lies in the pathogenicity island PAPI-1 next to genes coding for a putative phosphorelay system composed of the hybrid histidine kinase RcsC and the response regulator RcsB. The main focus of this work was the regulation of cupD at the mRNA level. It was found that the HN-S-like protein MvaT does not exert a strong influence on cupD transcript levels, as it does for cupA. cupD transcription is higher in cultures grown at 28 degrees C, which agrees with a cupD mutant presenting attenuated virulence only in a plant model, but not in a mouse model of infection. Whereas an rcsC in-frame deletion mutant presented higher levels of cupD mRNA, rcsB deletion had the opposite effect. Accordingly, overexpression of RcsB increased the levels of cupD transcription, and promoted biofilm formation and the appearance of fimbriae. A single transcription start site was determined for cupD and transcription from this site was induced by RcsB. A motif similar to the enterobacterial RcsB/RcsA-binding site was detected adjacent to the -35 region, suggesting that this could be the RcsB-binding site. Comparison of P. aeruginosa and Escherichia coli Rcs may provide insights into how similar systems can be used by different bacteria to control gene expression and to adapt to various environmental conditions.
Resumo:
The wetting behavior of rhamnolipids produced by Pseudomonas aeruginosa LBI strain grown on waste oil substrate and sodium dodecyl sulfate (SDS) on glass, polyethylene terephthalate (PET), poly(vinyl chloride) (PVC), poly(epsilon-caprolactone) (PCL) and polymer blend (PVC-PCL) was investigated by the measuring contact angle of sessile drops, to determine the wetting characteristics of rhamnolipids. The comparison of the wetting profiles showed that at low SDS and rhamnolipid concentrations, the contact angle increased and when the concentration of the surfactant increased further, the contact angle decreased. The blend surface (PVC-PCL) showed better wettability than the homopolymers themselves and the blend changed the surface hydrophobicity of the polymer, making it more hydrophilic. The rhamnolipids produced by the LBI strain exhibited superior wetting abilities than the chemical surfactant SDS one. This is the first work that evaluates the wetting properties of rhamnolipids on polymer blends.
Resumo:
Glycerol, cassava wastewater (CW), waste cooking oil and CW with waste frying oils were evaluated as alternative low-cost carbon substrates for the production of rhamnolipids and polyhydroxyalkanoates (PHAs) by various Pseudomonas aeruginosa strains. The polymers and surfactants produced were characterized by gas chromatography-mass spectrophotometry (MS) and by high-performance liquid chromatography-MS, and their composition was found to vary with the carbon source and the strain used in the fermentation. The best overall production of rhamnolipids and PHAs was obtained with CW with frying oil as the carbon source, with PHA production corresponding to 39% of the cell dry weight and rhamnolipid production being 660 mg l(-1). Under these conditions, the surface tension of the culture decreased to 30 mN m(-1), and the critical micelle concentration was 26.5 mg l(-1). It would appear that CW with frying oil has the highest potential as an alternative substrate, and its use may contribute to a reduction in the overall environmental impact generated by discarding such residues.
Resumo:
Background: Aggressive periodontitis is a specific form of periodontal disease that is characterized by rapid attachment loss and bone destruction. Cytokine profiles are of considerable value when studying disease course during treatment. The aim of this trial was to investigate cytokine levels in the gingival crevicular fluid (GCF) of patients with aggressive periodontitis, after treatment with photodynamic therapy (PDT) or scaling and root planing (SRP), in a split-mouth design on -7, 0, +1, +7, +30, and +90 days. Methods: Ten patients were randomly treated with PDT using a laser source associated with a photosensitizer or SRP with hand instruments. GCF samples were collected, and the concentrations of tumor necrosis factor-alpha (TNF-alpha) and receptor activator of nuclear factor-kappa B ligand (RANKL) were determined by enzyme-linked immunosorbent assays. The data were analyzed using generalized estimating equations to test the associations among treatments, evaluated parameters, and experimental times (alpha = 0.05). Results: Non-surgical periodontal treatment with PDT or SRP led to statistically significant reductions in TNF-alpha level 30 days following treatment. There were similar levels of TNF-alpha and RANKL at the different time points in both groups, with no statistically significant differences. Conclusion: SRP and PDT had similar effects on crevicular TNF-alpha and RANKL levels in patients with aggressive periodontitis. J Periodontol 2009;80:98-105.
Resumo:
Purpose: The aim of this study was to evaluate the effect of three denture hygiene methods against different microbial biofilms formed on acrylic resin specimens. Materials and methods: The set (sterile stainless steel basket and specimens) was contaminated (37 degrees C for 48 hours) by a microbial inoculum with 106 colony-forming units (CFU)/ml (standard strains: Staphylococcus aureus, Streptococcus mutans, Escherichia coli, Candida albicans, Pseudomonas aeruginosa, and Enterococcus faecalis; field strains: S. mutans, C. albicans, C. glabrata, and C. tropicalis). After inoculation, specimens were cleansed by the following methods: (1) chemical: immersion in an alkaline peroxide solution (Bonyplus tablets) for 5 minutes; (2) mechanical: brushing with a dentifrice for removable prostheses (Dentu Creme) for 20 seconds; and (3) a combination of chemical and mechanical methods. Specimens were applied onto a Petri plate with appropriate culture medium for 10 minutes. Afterward, the specimens were removed and the plates incubated at 37 degrees C for 48 hours. Results: Chemical, mechanical, and combination methods showed no significant difference in the reduction of CFU for S. aureus, S. mutans (ATCC and field strain), and P. aeruginosa. Mechanical and combination methods were similar and more effective than the chemical method for E. faecalis, C. albicans (ATCC and field strain), and C. glabrata. The combination method was better than the chemical method for E. coli and C. tropicalis, and the mechanical method showed intermediate results. Conclusion: The three denture hygiene methods showed different effects depending on the type of microbial biofilms formed on acrylic base resin specimens.
Resumo:
A clinical Klebsiella pneumoniae isolate carrying the extended-spectrum beta-lactamase gene variants bla(SHV-40), bla(TEM-116) and bla(GES-7) was recovered. Cefoxitin and ceftazidime activity was most affected by the presence of these genes and an additional resistance to trimethoprim-sulphamethoxazole was observed. The bla(GES-7) gene was found to be inserted into a class 1 integron. These results show the emergence of novel bla(TEM) and bla(SHV) genes in Brazil. Moreover, the presence of class 1 integrons suggests a great potential for dissemination of bla(GES) genes into diverse nosocomial pathogens. Indeed, the bla(GES-7) gene was originally discovered in Enterobacter cloacae in Greece and, to our knowledge, has not been reported elsewhere.