154 resultados para Proton, magnetic moment, g-factor, Penning-trap, CPT
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
The electron spin precession about an external magnetic field was studied by Faraday rotation on an inhomogeneous ensemble of singly charged, self-assembled (In,Ga)As/GaAs quantum dots. From the data the dependence of electron g-factor on optical transition energy was derived. A comparison with literature reports shows that the electron g-factors are quite similar for quantum dots with very different geometrical parameters, and their change with transition energy is almost identical. (C) 2011 American Institute of Physics. [doi:10.1063/1.3588413]
Resumo:
We report on the measurements of the Shubnikov de Haas oscillations (SdH) in symmetrically doped AlxGa1-xAs double wells with different Al compositions in wells, which lead to the opposite signs of the electronic g-factor in each layer. Surprisingly, the spin splitting appears and collapses several times with increase in the magnetic field, We attribute such behaviour to the oscillations of the exchange-correlation term with Landau filling factor. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
We have studied the quantum Hall effect in Al(x)Ga(1-x)As-double well structure with vanishing g-factor. We determined the density-magnetic field n(s) - B diagrams for the longitudinal resistance R(xx). In spite of the fact that the n(s) - B diagram for conventional GaAs double wells shows a striking similarity with the theory, we observed the strong difference between these diagrams for double wells with vanishing g-factor. We argue that the electron-electron interaction is responsible for unusual behavior of the Landau levels in such a system.
Resumo:
Here we present the results of magneto resistance measurements in tilted magnetic field and compare them with calculations. The comparison between calculated and measured spectra for the case of perpendicular fields enable us to estimate the dependence of the valley splitting as a function of the magnetic field and the total Lande g-factor (which is assumed to be independent of the magnetic field). Since both the exchange contribution to the Zeeman splitting as well as the valley splitting are properties associated with the 2D quantum confinement, they depend only on the perpendicular component of the magnetic field, while the bare Zeeman splitting depends on the total magnetic field. This information aided by the comparison between experimental and calculated gray scale maps permits to obtain separately the values of the exchange and the bare contribution to the g-factor.
Resumo:
The addition of transition metals to III-V semiconductors radically changes their electronic, magnetic, and structural properties. We show by ab initio calculations that in contrast to the conventional semiconductor alloys, the lattice parameter in magnetic semiconductor alloys, including those with diluted concentration, strongly deviates from Vegard's law. We find a direct correlation between the magnetic moment and the anion-transition metal bond lengths and derive a simple and general formula that determines the lattice parameter of a particular magnetic semiconductor by considering both the composition and magnetic moment. This dependence can explain some experimentally observed anomalies and stimulate other kind of investigations.
Resumo:
The g factors of the 12(+), 11(-), and 8(-) isomeric states in (188)Pb were measured using the time-differential perturbed angular distribution method as g(12(+)) = -0.179(6), g(11(-)) = +1.03(3), and g(8(-)) = -0.037(7). The g factor of the 12(+) state follows the observed slight down-sloping evolution of the g factors of the i(13/2)(2) neutron spherical states with decreasing N. The g factors of the 11(-) and 8(-) isomers proposed as oblate and prolate deformed states, respectively, were interpreted within the rotational model, using calculated and empirical g factor values for the involved single-particle orbitals.
Resumo:
Recent theories of panic disorder propose an extensive involvement of limbic system structures, such as the hippocampus, in the pathophysiology of this condition. Despite this, no prior study has examined exclusively the hippocampal neurochemistry in this disorder. The current study used proton magnetic resonance spectroscopy imaging ((1)H-MRSI) to examine possible abnormalities in the hippocampus in panic disorder patients. Participants comprised 25 panic patients and 18 psychiatrically healthy controls. N-acetylaspartate (NAA, a putative marker of neuronal viability) and choline (Cho, involved in the synthesis and degradation of cell membranes) levels were quantified relative to creatine (Cr, which is thought to be relatively stable among individuals and in different metabolic condition) in both right and left hippocampi. Compared with controls, panic patients demonstrated significantly lower NAA/Cr in the left hippocampus. No other difference was detected. This result is consistent with previous neuroimaging findings of hippocampal alterations in panic and provides the first neurochemical evidence suggestive of involvement of this structure in the disorder. Moreover, lower left hippocampal NAA/Cr in panic disorder may possibly reflect neuronal loss and/or neuronal metabolic dysfunction, and could be related to a deficit in evaluating ambiguous cues. (C) 2010 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Structural, magnetic and hyperfine interaction measurements have been carried out on the novel compound La(3.5)Ru(4)O(13) prepared under two different atmospheres (air and oxygen flow). This compound is formed in the orthorhombic structure (space group Pmmm, # 47). The coexistence of the triple-layered perovskite-type planes (quasi-2D structure) and the rutile-like slabs (1D structure) leads to interesting magnetic and electronic properties in this compound. The magnetic susceptibility of this system shows a peak at T similar to 47 K associated with antiferromagnetic interactions. The Curie-Weiss behaviour of the susceptibility provides an effective magnetic moment consistent with Ru ions in low-spin state. Perturbed angular correlation measurements carried out with (111)Cd probe in the temperature range 10-60 K reveal only quadrupole interactions and indicate the occurrence of structural distortions for T<40K. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
We present the first spin alignment measurements for the K*(0)(892) and phi(1020) vector mesons produced at midrapidity with transverse momenta up to 5 GeV/c at root s(NN) = 200 GeV at RHIC. The diagonal spin-density matrix elements with respect to the reaction plane in Au+Au collisions are rho(00) = 0.32 +/- 0.04 (stat) +/- 0.09 (syst) for the K*(0) (0.8 < p(T) < 5.0 GeV/c) and rho(00) = 0.34 +/- 0.02 (stat) +/- 0.03 (syst) for the phi (0.4 < p(T) < 5.0 GeV/c) and are constant with transverse momentum and collision centrality. The data are consistent with the unpolarized expectation of 1/3 and thus no evidence is found for the transfer of the orbital angular momentum of the colliding system to the vector-meson spins. Spin alignments for K(*0) and phi in Au+Au collisions were also measured with respect to the particle's production plane. The phi result, rho(00) = 0.41 +/- 0.02 (stat) +/- 0.04 (syst), is consistent with that in p+p collisions, rho(00) = 0.39 +/- 0.03 (stat) +/- 0.06 (syst), also measured in this work. The measurements thus constrain the possible size of polarization phenomena in the production dynamics of vector mesons.
Resumo:
The local site symmetry of Ce(3+) ions in the diluted magnetic semiconductors Pb(1-x)Ce(x)A (A=S, Se, and Te) has been investigated by electron-paramagnetic resonance (EPR). The experiments were carried out on single crystals with cerium concentration x ranging from 0.001 to 0.035. The isotropic line due to Ce(3+) ions located at the substitutional Pb cation site with octahedral symmetry was observed for all the studied samples. We determined the effective Lande factors to be g=1.333, 1.364, and 1.402 for A=S, Se, and Te, respectively. The small difference with the predicted Lande factor g of 10/7 for the Gamma(7) (J=5/2) ground state was attributed to crystal-field admixture. In addition, EPR lines from Ce(3+) ions located at sites with small distortion from the original octahedral symmetry were also observed. Two distinct sites with axial distortion along the < 001 > crystallographic direction were identified and a third signal in the spectrum was attributed to sites with the cubic symmetry distorted along the < 110 > direction. The distortion at these distinct Ce sites is attributed to Pb lattice vacancies near the cerium ions that compensate for its donor activity.
Resumo:
First-principles density-functional theory studies have reported open structures based on the formation of double simple-cubic (DSC) arrangements for Ru(13), Rh(13), Os(13), and Ir(13), which can be considered an unexpected result as those elements crystallize in compact bulk structures such as the face-centered cubic and hexagonal close-packed lattices. In this work, we investigated with the projected augmented wave method the dependence of the lowest-energy structure on the local and semilocal exchange-correlation (xc) energy functionals employed in density-functional theory. We found that the local-density approximation (LDA) and generalized-gradient formulations with different treatment of the electronic inhomogeneities (PBE, PBEsol, and AM05) confirm the DSC configuration as the lowest-energy structure for the studied TM(13) clusters. A good agreement in the relative total energies are obtained even for structures with small energy differences, e. g., 0.10 eV. The employed xc functionals yield the same total magnetic moment for a given structure, i.e., the differences in the bond lengths do not affect the moments, which can be attributed to the atomic character of those clusters. Thus, at least for those systems, the differences among the LDA, PBE, PBEsol, and AM05 functionals are not large enough to yield qualitatively different results. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3577999]
Resumo:
In this work the Mn(5)Si(3) and Mn(5)SiB(2) phases were produced via arc melting and heat treatment at 1000 degrees C for 50 h under argon. A detailed microstructure characterization indicated the formation of single-phase Mn(5)Si(3) and near single-phase Mn(5)SiB(2) microstructures. The magnetic behavior of the Mn(5)Si(3) phase was investigated and the results are in agreement with previous data from the literature, which indicates the existence of two anti-ferromagnetic structures for temperatures below 98 K. The Mn(5)SiB(2) phase shows a ferromagnetic behavior presenting a saturation magnetization M(s) of about 5.35 x 10(5) A/m (0.67 T) at room temperature and an estimated Curie temperature between 470 and 490 K. In addition, AC susceptibility data indicates no evidence of any other magnetic ordering in 4-300 K temperature range. The magnetization values are smaller than that calculated using the magnetic moment from previous literature NMR results. This result suggests a probable ferrimagnetic arrangement of the Mn moments. (C) 2009 Elsevier B. V. All rights reserved.
Resumo:
An experiment was implemented to study fluid flow in a pressure media. This procedure successfully combines nuclear magnetic resonance imaging with a pressure membrane chamber in order to visualize the non-wetting and wetting fluid flows with controlled boundary conditions. A specially designed pressure membrane chamber, made of non-magnetic materials and able to withstand 4 MPa, was designed and built for this purpose. These two techniques were applied to the drainage of Douglas fir sapwood. In the study of the longitudinal flow, narrow drainage fingers are formed in the latewood zones. They follow the longitudinal direction of wood and spread throughout the sample length. These fingers then enlarge in the cross-section plane and coalesce until drainage reaches the whole latewood part. At the end of the experiments, when the drainage of liquid water in latewood is completed, just a few sites of percolation appear in earlywood zones. This difference is a result of the wood anatomical structure, where pits, the apertures that allow the sap to flow between wood cells, are more easily aspirated in earlywood than in latewood. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Few proton magnetic resonance spectroscopy ((1)H spectroscopy) studies have investigated the dorsolateral prefrontal cortex (DLPFC), a key region in the pathophysiology of major depressive disorder (MDD). We used (1)H spectroscopy to verify whether MDD patients differ from healthy controls (HQ in metabolite levels in this brain area. Thirty-seven unmedicated DSM-IV MDD patients were compared with 40 HC. Subjects underwent a short echo-time (1)H spectroscopy examination at 1.5 T, with an 8-cm(3) single voxel placed in the left DLPFC. Reliable absolute metabolite levels of N-acetyl aspartate (NAA), phosphocreatine plus creatine (PCr+Cr), choline-containing compounds (GPC+PC), myo-inositol, glutamate plus glutamine (Glu+Gln), and glutamate were obtained using the unsuppressed water signal as an internal reference. Metabolite levels in the left DLPFC did not statistically differ between MDD patients and HC. We found an interaction between gender and diagnosis on PCr+Cr levels. Male MDD patients presented lower levels of PCr+Cr than male HC, and female MDD patients presented higher levels of PCr+Cr than female HC. Moreover, length of illness was inversely correlated with NAA levels. These findings suggest that there is not an effect of diagnosis on the left DLPFC neurochemistry. Possible effects of gender on PCr+Cr levels of MDD patients need to be further investigated. (C) 2009 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Objective: To describe the findings of proton magnetic resonance spectroscopy (H-1-MRS) in Alzheimer`s disease (AD) and cognitive impairment, no dementia (CIND) elderly from a community-based sample. Methods: Thirteen patients with AD, 12 with CIND and 15 normal individuals were evaluated. The H-1-MRS was performed in the right temporal, left parietal and medial occipital regions studying the metabolites N-acetylaspartate (NAA), creatine (Cr), choline (Cho) and myoinositol (ml). The clinical diagnosis was based on standardized cognitive tests - MMSE and CAMDEX - and the results correlated with the H-1-MRS. Results: Parietal Cho was higher in control individuals and lower in CIND subjects. AD and control groups were better identified by temporal and parietal ml combined with the temporal NAA/Cr ratio. CIND was better identified by parietal Cho. Conclusion: The H-1-MRS findings confirmed the hypothesis that metabolic alterations are present since the first symptoms of cognitively impaired elderly subjects. These results suggest that combining MRS from different cerebral regions can help in the diagnosis and follow-up of community elderly individuals with memory complaints and AD. Copyright (C) 2008 S. Karger AG, Basel.