58 resultados para Protein structure prediction

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The PilZ protein was originally identified as necessary for type IV pilus (T4P) biogenesis. Since then, a large and diverse family of bacterial PilZ homology domains have been identified, some of which have been implicated in signaling pathways that control important processes, including motility, virulence and biofilm formation. Furthermore, many PilZ homology domains, though not PilZ itself, have been shown to bind the important bacterial second messenger bis(3`-> 5`)cyclic diGMP (c-diGMP). The crystal structures of the PilZ orthologs from Xanthomonas axonopodis pv Citri (PilZ(XAC1133), this work) and from Xanthomonas campestris pv campestris (XC1028) present significant structural differences to other PilZ homologs that explain its failure to bind c-diGMP. NMR analysis of PilZ(XAC1133) shows that these structural differences are maintained in solution. In spite of their emerging importance in bacterial signaling, the means by which NZ proteins regulate specific processes is not clear. In this study, we show that PilZ(XAC1133) binds to PilB, an ATPase required for TV polymerization, and to the EAL domain of FiMX(XAC2398), which regulates TV biogenesis and localization in other bacterial species. These interactions were confirmed in NMR, two-hybrid and far-Western blot assays and are the first interactions observed between any PilZ domain and a target protein. While we were unable to detect phosphodiesterase activity for FimXX(AC2398) in vitro, we show that it binds c-diGMP both in the presence and in the absence of PilZ(XAC1133). Site-directed mutagenesis studies for conserved and exposed residues suggest that PilZ(XAC1133) interactions with FimX(XAC2398) and PilB(XAC3239) are mediated through a hydrophobic surface and an unstructured C-terminal extension conserved only in PilZ orthologs. The FimX-PilZ-PilB interactions involve a full set of ""degenerate"" GGDEF, EAL and PilZ domains and provide the first evidence of the means by which PilZ orthologs and FimX interact directly with the TP4 machinery. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The dengue virus NS1 protein has been shown to be a protective antigen under different experimental conditions but the recombinant protein produced in bacterial expression systems is usually not soluble and loses structural and immunological features of the native viral protein In the present study, experimental conditions leading to purification and refolding of the recombinant dengue virus type 2 (DENV-2) NS1 protein expressed in Escherichia coil are described The refolded recombinant protein was recovered as heat-stable soluble dimers with preserved structural features, as demonstrated by spectroscopic methods In addition, antibodies against epitopes of the NS1 protein expressed in eukaryotic cells recognized the refolded protein expressed in E coli but not the denatured form or the same protein submitted to a different refolding condition Collectively, the results demonstrate that the recombinant NS1 protein preserved important conformation and antigenic determinants of the native virus protein and represents a valuable reagent either for the development of vaccines or for diagnostic methods. (C) 2010 Elsevier B V All rights reserved

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Shwachman-Bodian-Diamond syndrome is an autosomal recessive genetic syndrome with pleiotropic phenotypes, including pancreatic deficiencies, bone marrow dysfunctions with increased risk of myelodysplasia or leukemia, and skeletal abnormalities. This syndrome has been associated with mutations in the SBDS gene, which encodes a conserved protein showing orthologs in Archaea and eukaryotes. The Shwachman-Bodian-Diamond syndrome pleiotropic phenotypes may be an indication of different cell type requirements for a fully functional SBDS protein. RNA-binding activity has been predicted for archaeal and yeast SBDS orthologs, with the latter also being implicated in ribosome biogenesis. However, full-length SBDS orthologs function in a species-specific manner, indicating that the knowledge obtained from model systems may be of limited use in understanding major unresolved issues regarding SBDS function, namely, the effect of mutations in human SBDS on its biochemical function and the specificity of RNA interaction. We determined the solution structure and backbone dynamics of the human SBDS protein and describe its RNA binding site using NMR spectroscopy. Similarly to the crystal structures of Archaea, the overall structure of human SBDS comprises three well-folded domains. However, significant conformational exchange was observed in NMR dynamics experiments for the flexible linker between the N-terminal domain and the central domain, and these experiments also reflect the relative motions of the domains. RNA titrations monitored by heteronuclear correlation experiments and chemical shift mapping analysis identified a classic RNA binding site at the N-terminal FYSH (fungal, Yhr087wp, Shwachman) domain that concentrates most of the mutations described for the human SBDS. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Protein structure and function can be regulated by no specific interactions, such as ionic interactions in the presence of salts. Green fluorescent protein (GFP) shows remarkable structural stability and high fluorescence; its stability can be directly related to its fluorescence output, among other characteristics. GFP is stable under increasing temperatures, and its thermal denaturation is highly reproducible. The aim of this study was to evaluate the thermal stability of GFP in the presence of different salts at several concentrations and exposed to constant temperatures, in a range of 70-95 degrees C. Thermal stability was expressed in decimal reduction time. It was observed that the D-values obtained were higher in the presence of citrate and phosphate, when compared with that obtained in their absence, indicating that these salts stabilized the protein against thermal denaturation. (C) 2010 American Institute of Chemical Engineers Biotechnol. Prog., 27: 269-272, 2011

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Protein engineering is a powerful tool, which correlates protein structure with specific functions, both in applied biotechnology and in basic research. Here, we present a practical teaching course for engineering the green fluorescent protein (GFP) from Aequorea victoria by a random mutagenesis strategy using error-prone polymerase chain reaction. Screening of bacterial colonies transformed with random mutant libraries identified GFP variants with increased fluorescence yields. Mapping the three-dimensional structure of these mutants demonstrated how alterations in structural features such as the environment around the fluorophore and properties of the protein surface can influence functional properties such as the intensity of fluorescence and protein solubility.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Small-angle X-ray scattering (SAXS) and elastic and quasi-elastic neutron scattering techniques were used to investigate the high-pressure-induced changes on interactions, the low-resolution structure and the dynamics of lysozyme in solution. SAXS data, analysed using a global-fit procedure based on a new approach for hydrated protein form factor description, indicate that lysozyme completely maintains its globular structure up to 1500 bar, but significant modi. cations in the protein-protein interaction potential occur at approximately 600-1000 bar. Moreover, the mass density of the protein hydration water shows a clear discontinuity within this pressure range. Neutron scattering experiments indicate that the global and the local lysozyme dynamics change at a similar threshold pressure. A clear evolution of the internal protein dynamics from diffusing to more localized motions has also been probed. Protein structure and dynamics results have then been discussed in the context of protein-water interface and hydration water dynamics. According to SAXS results, the new configuration of water in the first hydration layer induced by pressure is suggested to be at the origin of the observed local mobility changes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Rare HFE variants have been shown to be associated with hereditary hemochromatosis (HH), an iron overload disease. The low frequency of the HFE p.C282Y mutation in HH-affected Brazilian patients may suggest that other HFE-related mutations may also be implicated in the pathogenesis of HH in this population. The main aim was to screen for new HFE mutations in Brazilian individuals with primary iron overload and to investigate their relationship with HH. Fifty Brazilian patients with primary iron overload (transferrin saturation >50% in females and 60% in males) were selected. Subsequent bidirectional sequencing for each HFE exon was performed. The effect of HFE mutations on protein structure were analyzed by molecular dynamics simulation and free binding energy calculations. p.C282Y in homozygosis or in heterozygosis with p.H63D were the most frequent genotypic combinations associated with HH in our sample population (present in 17 individuals, 34%). Thirty-six (72.0%) out of the 50 individuals presented at least one HFE mutation. The most frequent genotype associated with HH was the homozygous p.C282Y mutation (n = 11, 22.0%). One novel mutation (p.V256I) was indentified in heterozygosis with the p.H63D mutation. In silico modeling analysis of protein behavior indicated that the p.V256I mutation does not reduce the binding affinity between HFE and beta 2-microglobulin ((beta 2M) in the same way the p.C282Y mutation does compared with the native HFE protein. In conclusion, screening of HFE through direct sequencing, as compared to p.C282Y/p.H63D genotyping, was not able to increase the molecular diagnosis yield of HH. The novel p.V256I mutation could not be implicated in the molecular basis of the HH phenotype, although its role cannot be completely excluded in HH-phenotype development. Our molecular modeling analysis can help in the analysis of novel, previously undescribed, HFE mutations. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

PEGylation is a strategy that has been used to improve the biochemical properties of proteins and their physical and thermal stabilities. In this study, hen egg-white lysozyme (EC 3.2.1.17; LZ) was modified with methoxypolyethylene glycol-p-nitrophenyl carbonate (mPEG-pNP, MW 5000). This PEGylation of LZ produced conjugates that retained full enzyme activity with glycol chitosan, independent of degree of enzyme modification; its biological activity with the substrate Micrococcus lysodeikticus was altered according to its degree of modification. The conjugate obtained with a low degree of mPEG-pNP/NH(2) modification was studied by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF), demonstrating a spectral peak at m/z 19,988 Da with 77% of its original enzymatic activity. Spectroscopic studies of Fourier transform infrared (FIR) and circular dichroism (CD) did not show any relevant differences in protein structure between the native and conjugate LZ. Studies of the effects of pH and temperature on PEGylated LZ indicated that the conjugate was active over a broad pH range, stable at 50 degrees C, and demonstrated resistance to proteolytic degradation. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

PEGylation is a successful strategy for improving the biochemical and biopharmaceutical properties of proteins and peptides through the covalent attachment of polyethylene glycol chains. In this work, purified recombinant uricase from Candida sp. (UC-r) was modified by PEGylation with metoxypolyethilenoglycol-p-nitrophenyl-carbonate (mPEG-pNP) and metoxypolyethyleneglycol-4,6-dichloro-s-triazine (mPEG-CN). The UC-r-mPEG-pNP and UC-r-mPEG-CN conjugates retained 87% and 75% enzyme activity respectively. The K(M) values obtained 2.7 x 10(-5) M (mPEG-pNP) or 3.0 x 10(-5) M (mPEG-CN) lot the conjugates as compared to 5.4 x 10(-5) M for the native UC-r, suggesting enhancement in the substrate affinity of the enzyme attached. The effects of pH and temperature on PEGylated UC-r indicated that the conjugates were more active at close physiological pH and were stable up to 70 degrees C. Spectroscopic study performed by circular dichroism at 20 degrees C and 50 degrees C did not show any relevant difference in protein structure between native and PEGylated UC-r. In rabbit and Balb/c mice, the native UC-r elicited an intense immune response being highly immunogenic. On the other hand, the PEGylated UC-r when injected chronically in mice did not induce any detectable antibody response. This indicates sufficient reduction of the immunogenicity this enzyme by mPEG-pNP or mPEG-CN conjugation, making it suitable for a possible therapeutical use. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Phospholipases A(2) (PLA(2)) are enzymes commonly found in snake venoms from Viperidae and Elaphidae families, which are major components thereof. Many plants are used in traditional medicine its active agents against various effects induced by snakebite. This article presents the PLA(2) BthTX-I structure prediction based on homology modeling. In addition, we have performed virtual screening in a large database yielding a set of potential bioactive inhibitors. A flexible docking program was used to investigate the interactions between the receptor and the new ligands. We have performed molecular interaction fields (MIFs) calculations with the phospholipase model. Results confirm the important role of Lys49 for binding ligands and suggest three additional residues as well. We have proposed a theoretically nontoxic, drug-like, and potential novel BthTX-I inhibitor. These calculations have been used to guide the design of novel phospholipase inhibitors as potential lead compounds that may be optimized for future treatment of snakebite victims as well as other human diseases in which PLA(2) enzymes are involved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background: Deficiency of 11 beta-hydroxylase results in the impairment of the last step of cortisol synthesis. In females, the phenotype of this disorder includes different degrees of genital ambiguity and arterial hypertension. Mutations in the CYP11B1 gene are responsible for this disease. Objective: The objective of the study was to screen the CYP11B1 gene for mutations in two unrelated Brazilian females with congenital adrenal hyperplasia due to 11 beta-hydroxylase deficiency. Design: The coding and intron-exon junction regions of CYP11B1 were totally sequenced. A putative splice mutation was further investigated by minigene transcription. Results: We report two novel CYP11B1 mutations in these Brazilian patients. An Arabian Lebanese descendent female was found to be homozygous for a cytosine insertion at the beginning of exon 8, changing the 404 arginine to proline. It alters the open reading frame, creating a putative truncated protein at 421 residue, which eliminates the domain necessary for the association of heme prosthetic group. A severely virilized female was homozygous for the g. 2791G>A transition in the last position of exon 4. This nucleotide is also part of 5` intron 4 donor splice site consensus sequence. Minigene experiments demonstrated that g. 2791G>A activated an alternative splice site within exon 4, leading to a 45-bp deletion in the transcript. The putative translation of such modified mRNA indicates a truncated protein at residue 280. Conclusions: We describe two novel mutations, g. 4671_4672insC and g. 2791G>A, that drastically affects normal protein structure. These mutations abolish normal enzyme activity, leading to a severe phenotype of congenital adrenal hyperplasia due to 11 beta-hydroxylase deficiency. (J Clin Endocrinol Metab 94: 3481-3485, 2009)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Arginase (L-arginine amidinohydrolase, E.C. 3.5.3.1) is a metalloenzyme that catalyses the hydrolysis Of L-arginine to L-ornithine and urea. In Leishmania spp., the biological role of the enzyme may be involved in modulating NO production upon macrophage infection. Previously, we cloned and characterized the arginase gene from Leishmania (Leishmania) amazonensis. In the present work, we successfully expressed the recombinant enzyme in E. coli and performed biochemical and biophysical characterization of both the native and recombinant enzymes. We obtained K-M and V-max. values of 23.9(+/- 0.96) mM and 192.3 mu mol/min mg protein (+/- 14.3), respectively, for the native enzyme. For the recombinant counterpart, K-M was 21.5(+/- 0.90) mM and V-max was 144.9(+/- 8.9) mu mol/min mg. Antibody against the recombinant protein confirmed a glycosomal cellular localization of the enzyme in promastigotes. Data from light scattering and small angle X-ray scattering showed that a trimeric state is the active form of the protein. We determined empirically that a manganese wash at room temperature is the best condition to purify active enzyme. The interaction of the recombinant protein with the immobilized nickel also allowed us to confirm the structural disposition of histidine at positions 3 and 324. The determined structural parameters provide substantial data to facilitate the search for selective inhibitors of parasitic sources of arginase, which could subsequently point to a candidate for leishmaniasis therapy. (c) 2008 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper explores the structural continuum in CATH and the extent to which superfamilies adopt distinct folds. Although most superfamilies are structurally conserved, in some of the most highly populated superfamilies (4% of all superfamilies) there is considerable structural divergence. While relatives share a similar fold in the evolutionary conserved core, diverse elaborations to this core can result in significant differences in the global structures. Applying similar protocols to examine the extent to which structural overlaps occur between different fold groups, it appears this effect is confined to just a few architectures and is largely due to small, recurring super-secondary motifs (e.g., alpha beta-motifs, alpha-hairpins). Although 24% of superfamilies overlap with superfamilies having different folds, only 14% of nonredundant structures in CATH are involved in overlaps. Nevertheless, the existence of these overlaps suggests that, in some regions of structure space, the fold universe should be seen as more continuous.