3 resultados para Protéine HT
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Serotonin (5-HT) is involved in the fine adjustments at several brain centers including the core of the mammal circadian timing system (CTS) and the hypothalamic suprachiasmatic nucleus (SCN). The SCN receives massive serotonergic projections from the midbrain raphe nuclei, whose inputs are described in rats as ramifying at its ventral portion overlapping the retinohypothalamic and geniculohypothalamic fibers. In the SCN, the 5-HT actions are reported as being primarily mediated by the 5-HT1 type receptor with noted emphasis for 5-HT(1B) subtype, supposedly modulating the retinal input in a presynaptic way. In this study in a New World primate species, the common marmoset (Callithrix jacchus), we showed the 5-HT(1B) receptor distribution at the dorsal SCN concurrent with a distinctive location of 5-HT-immunoreactive fibers. This finding addresses to a new discussion on the regulation and synchronization of the circadian rhythms in recent primates. (C) 2010 Elsevier Ireland Ltd. All rights reserved.
Resumo:
5-HT(1A) receptor plays an important role in the delayed onset of antidepressant action of a class of selective serotonin reuptake inhibitors. Moreover, 5-HT(1A) receptor levels have been shown to be altered in patients suffering from major depression. In this work, hologram quantitative structure-activity relationship (HQSAR) studies were performed on a series of arylpiperazine compounds presenting affinity to the 5-HT(1A) receptor. The models were constructed with a training set of 70 compounds. The most significant HQSAR model (q(2) = 0.81, r(2) = 0.96) was generated using atoms, bonds, connections, chirality, and donor and acceptor as fragment distinction, with fragment size of 6-9. Predictions for an external test set containing 20 compounds are in good agreement with experimental results showing the robustness of the model. Additionally, useful information can be obtained from the 2D contribution maps.
Resumo:
5-HT(1A) receptor antagonists have been employed to treat depression, but the lack of structural information on this receptor hampers the design of specific and selective ligands. In this study, we have performed CoMFA studies on a training set of arylpiperazines (high affinity 5-HT(1A) receptor ligands) and to produce an effective alignment of the data set, a pharmacophore model was produced using Galahad. A statistically significant model was obtained, indicating a good internal consistency and predictive ability for untested compounds. The information gathered from our receptor-independent pharmacophore hypothesis is in good agreement with results from independent studies using different approaches. Therefore, this work provides important insights on the chemical and structural basis involved in the molecular recognition of these compounds. (C) 2010 Elsevier Masson SAS. All rights reserved.