2 resultados para Prioritization of cluster policy
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Background and Objectives: There are some indications that low-level laser therapy (LLLT) may delay the development of skeletal muscle fatigue during high-intensity exercise. There have also been claims that LED cluster probes may be effective for this application however there are differences between LED and laser sources like spot size, spectral width, power output, etc. In this study we wanted to test if light emitting diode therapy (LEDT) can alter muscle performance, fatigue development and biochemical markers for skeletal muscle recovery in an experimental model of biceps humeri muscle contractions. Study Design/Materials and Methods: Ten male professional volleyball players (23.6 [SD +/- 5.6] years old) entered a randomized double-blinded placebo-controlled crossover trial. Active cluster LEDT (69 LEDs with wavelengths 660/850 nm, 10/30 mW, 30 seconds total irradiation time, 41.7J of total energy irradiated) or an identical placebo LEDT was delivered under double-blinded conditions to the middle of biceps humeri muscle immediately before exercise. All subjects performed voluntary biceps humeri contractions with a workload of 75% of their maximal voluntary contraction force (MVC) until exhaustion. Results: Active LEDT increased the number of biceps humeri contractions by 12.9% (38.60 [SD +/- 9.03] vs. 34.20 [SD +/- 8.68], P = 0.021) and extended the elapsed time to perform contractions by 11.6% (P = 0.036) versus placebo. In addition, post-exercise levels of biochemical markers decreased significantly with active LEDT: Blood Lactate (P = 0.042), Creatine Kinase (P = 0.035), and C-Reative Protein levels (P = 0.030), when compared to placebo LEDT. Conclusion: We conclude that this particular procedure and dose of LEDT immediately before exhaustive biceps humeri contractions, causes a slight delay in the development of skeletal muscle fatigue, decreases post-exercise blood lactate levels and inhibits the release of Creatine Kinase and C-Reative Protein. Lasers Surg. Med. 41:572-577, 2009. (C) 2009 Wiley-Liss, Inc.
Resumo:
Policy hierarchies and automated policy refinement are powerful approaches to simplify administration of security services in complex network environments. A crucial issue for the practical use of these approaches is to ensure the validity of the policy hierarchy, i.e. since the policy sets for the lower levels are automatically derived from the abstract policies (defined by the modeller), we must be sure that the derived policies uphold the high-level ones. This paper builds upon previous work on Model-based Management, particularly on the Diagram of Abstract Subsystems approach, and goes further to propose a formal validation approach for the policy hierarchies yielded by the automated policy refinement process. We establish general validation conditions for a multi-layered policy model, i.e. necessary and sufficient conditions that a policy hierarchy must satisfy so that the lower-level policy sets are valid refinements of the higher-level policies according to the criteria of consistency and completeness. Relying upon the validation conditions and upon axioms about the model representativeness, two theorems are proved to ensure compliance between the resulting system behaviour and the abstract policies that are modelled.