100 resultados para Presidential lineages
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
A novel karyotype with 2n = 50, FN = 48, was described for specimens of Thaptomys collected at Una, State of Bahia, Brazil, which are morphologically indistinguishable from Thaptomys nigrita, 2n = 52, FN = 52, found in other localities. It was hence proposed that the 2n = 50 karyotype could belong to a distinct species, cryptic of Thaptomys nigrita, once chromosomal rearrangements observed, along with the geographic distance, might represent a reproductive barrier between both forms. Phylogenetic analyses using maximum parsimony and maximum likelihood based on partial cytochrome b sequences with 1077 bp were performed, attempting to establish the relationships among the individuals with distinct karyotypes along the geographic distribution of the genus; the sample comprised 18 karyotyped specimens of Thaptomys, encompassing 15 haplotypes, from eight different localities of the Atlantic Rainforest. The intra-generic relationships corroborated the distinct diploid numbers, once both phylogenetic reconstructions recovered two monophyletic lineages, a northeastern clade grouping the 2n = 50 and a southeastern clade with three subclades, grouping the 2n = 52 karyotype. The sequence divergence observed between their individuals ranged from 1.9% to 3.5%.
Resumo:
A morphological and cell culture study from nasal mucosa of dogs was performed in order to establish a protocol to obtain a cell population committed to neuronal lineage, as a proposal for the treatment of traumatic and degenerative lesions in these animals, so that in the future these results could be applied to the human species. Twelve mongrel dogs of 60-day aged pregnancy were collected from urban pound dogs in São Paulo. Tissue from cribriform ethmoidal lamina of the fetuses was collected at necropsy under sterile conditions around 1h to 2h postmortem by uterine sections and sections from the fetal regions described above. Isolated cells of this tissue were added in DMEM/F-12 medium under standard conditions of incubation (5% CO², >37ºC). Cell culture based on isolated cells from biopsies of the olfactory epithelium showed rapid growth when cultured for 24 hours, showing phase-bright sphere cells found floating around the fragments, attached on culture flasks. After 20 days, a specific type of cells, predominantly ellipsoids or fusiform cells was characterized in vitro. The indirect immunofluorescence examination showed cells expressing markers of neuronal precursors (GFAP, neurofilament, oligodendrocyte, and III â-tubulin). The cell proliferation index showed Ki67 immunostaining with a trend to label cell groups throughout the apical region, while PCNA immunostaining label predominantly cell groups lying above the basal lamina. The transmission electron microscopy from the olfactory epithelium of dogs revealed cells with electron-dense cytoplasm and preserving the same distribution as those of positive cell staining for PCNA. Metabolic activity was confirmed by presence of euchromatin in the greatest part of cells. All these aspects give subsidies to support the hypothesis about resident progenitor cells among the basal cells of the olfactory epithelium, committed to renewal of these cell populations, especially neurons.
Resumo:
The stingless bee Melipona beecheii presents great variability and is considered a complex of species. In order to better understand this species complex, we need to evaluate its diversity and develop methods that allow geographic traceability of the populations. Here we present a fast, efficient, and inexpensive means to accomplish this using geometric morphometrics of wings. We collected samples from Mexico, Guatemala, El Salvador, Nicaragua, and Costa Rica and we were able to correctly assign 87.1% of the colonies to their sampling sites and 92.4% to their haplotype. We propose that geometric morphometrics of the wing could be used as a first step analysis leaving the more expensive molecular analysis only to doubtful cases.
Resumo:
Grapholita molesta (Lepidoptera: Tortricidae) is one of the main pests of peach trees in Brazil, causing fruit losses of 3-5%. Among possible biological control agents, Trichogramma pretiosum (Hymenoptera: Trichogrammatidae) has been found in peach orchards. Our objectives were to study the rearing of T pretiosum in eggs of G. molesta and Anagasta kuehniella (Lepidoptera: Pyralidae), and select lineages of this parasitoid that have the potential to control G. molesta. Selection of best lineages was made from 5 populations of T pretiosum collected from organically-cultivated peach orchards. The study was done under controlled temperature (25 +/- 2 degrees C), relative humidity (70 +/- 10%) and 14:10 h (light:dark) photoperiod conditions. Grapholita molesta eggs were found to be adequate hosts for the development of T pretiosum, and the parameters for number of parasitized eggs, percent parasitized eggs, and sex ratio were similar to those for A. kuehniella eggs. The highest rate of parasitism of G. molesta eggs occurred in eggs with up to 48 h of embryonic development. Among the lineages of T pretiosum that were collected, HO8, PO8, PEL, and L3M showed the best biological performance and are therefore indicated for semi-field and field studies for biological control of oriental fruit moth.
Resumo:
The present study consisted of two experiments that evaluated experimental infections of Haemaphysalis leporispalustris ticks by a Brazilian strain of Rickettsia rickettsii, and their effect on tick biology. In experiment I, ticks were exposed to R. rickettsii during the larval, nymphal or adult stages by feeding on rabbits (Oryctolagus cuniculus) needle-inoculated with R. rickettsii, and thereafter reared on uninfected rabbits for the entire next tick generation. Regardless of the tick stage that acquired the infection, all subsequent tick stages were shown to be infected by PCR (infection rates varying from 1.3 to 41.7%), and were able to transmit R. rickettsii to uninfected rabbits, as demonstrated by rabbit seroconversion, guinea pig inoculation with rabbit blood, and PCR on rabbit blood. In Experiment II, ticks were exposed to R. rickettsii during the larval stage by feeding on rabbits co-infested with R. rickettsii-infected adult ticks, and thereafter reared on uninfected rabbits until the next generation of larvae. Again, all subsequent tick stages were shown to be infected by PCR (infection rates varying from 3.0 to 40.0%), and were able to transmit R. rickettsii to uninfected rabbits. Thus, it was demonstrated that larvae, nymphs, and adults of H. leporispalustris were able to acquire and maintain the R. rickettsii infection by transstadial and transovarial transmissions within the tick population, with active transmission of the bacterium to susceptible rabbits by all parasitic stages. Analyses of biological parameters of uninfected and R. rickettsii-infected tick lineages were performed in order to evaluate possible deleterious effects of R. rickettsii to the infected tick lineages. Surprisingly, all but one of the four R. rickettsii-experimental groups of the present study showed overall better biological performance than their sibling uninfected control ticks. Results of the present study showed that H. leporispalustris could support infection by a high virulent strain of R. rickettsii for at least two generations, in which infected tick lineages tended to have better performance than uninfected ticks. Our results support a possible role of H. leporispalustris in the enzootic maintenance of R. rickettsii in Latin America, as previously suggested by earlier works.
Resumo:
Toxoplasma gondii isolates from Brazil are biologically and genetically different from European and North America isolates. Recently, four genotypes were considered the common clonal lineages in Brazil and were designated as types BrI, BrII, BrIII, and BrIV. The pathogenicity of two major Brazilian lineages was investigated after oral inoculation of queens in the middle third of their pregnancies with T. gondii cysts. Twelve pregnant queens without T. gondii antibodies were distributed in group A (infected with a type BrI isolate); group 2 (infected with type BrIII isolate), and group 3 (non-infected control). Infection with type BrI isolate caused toxoplasmosis manifestations and abortion from one litter. Toxoplasmosis manifestations besides premature stillbirth of one litter were observed in queens infected with type BrIII isolate. Indirect fluorescence antibody test showed T. gondii antibodies in all eight infected queens at 30 days after inoculation. In two 10-day-old kittens of the same litter (group 1), titers of 16 and 64 were detected. At the same time, titers of 16, 32, and 32 were detected in three kittens from the same litter (group 2). Experimental infection with tissue cysts from a type BrI and type BrIII isolates of T. gondii developed similar reproductive disturbance in primary infected pregnant queens.
Resumo:
Phylogenetic analyses of representative species from the five genera of Winteraceae (Drimys, Pseudowintera, Takhtajania, Tasmannia, and Zygogynum s.l.) were performed using ITS nuclear sequences and a combined data-set of ITS + psbA-trnH + rpS16 sequences (sampling of 30 and 15 species, respectively). Indel informativity using simple gap coding or gaps as a fifth character was examined in both data-sets. Parsimony and Bayesian analyses support the monophyly of Drimys, Tasmannia, and Zygogynum s.l., but do not support the monophyly of Belliolum, Zygogynum s.s., and Bubbia. Within Drimys, the combined data-set recovers two subclades. Divergence time estimates suggest that the splitting between Drimys and its sister clade (Pseudowintera + Zygogynum s.l.) occurred around the end of the Cretaceous; in contrast, the divergence between the two subclades within Drimys is more recent (15.5-18.5 MY) and coincides in time with the Andean uplift. Estimates suggest that the earliest divergences within Winteraceae could have predated the first events of Gondwana fragmentation. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Temporal changes in the prevalence of antigenic variants in Plasmodium falciparum populations have been interpreted as evidence of immune-mediated frequency-dependent selection, but evolutively neutral processes may generate similar patterns of serotype replacement. Over 4 years, we investigated the population dynamics of P. falciparum polymorphisms the community level by using 11 putatively neutral microsatellite markers. Plasmodium falciparum Populations were less diverse than sympatric P. vivax isolates, with less multiple-clone infections, lower number of alleles per locus and lower Virtual heterozygosity, but both species showed significant multilocus linkage disequilibrium. Evolutively neutral P. falciparum polymorphisms showed a high turnover rate, with few lineages persisting for several months in the population. Similar results had previously been obtained, in the same community, for sympatric P. vivax isolates. In contrast, the prevalence of the 2 dimorphic types of a major antigen, MSP-2, remained remarkably stable throughout the Study period. We Suggest that the relatively fast turnover of parasite lineages represents the typical population dynamics of neutral polymorphisms in small populations, with clear implications for the detection of frequency-dependent selection of polymorphisms.
Resumo:
In this study, we provide phylogenetic and biogeographic evidence that the Trypanosomo cruzi lineages T. cruzi I (TCI) and T. cruzi IIa (TCIIa) circulate amongst non-human primates in Brazilian Amazonia, and are transmitted by Rhodnius species in overlapping arboreal transmission cycles, sporadically infecting humans. TO presented higher prevalence rates, and no lineages other than TCI and TCIIa were found in this study in wild monkeys and Rhodnius from the Amazonian region. We characterised TO and TCIIa from wild primates (16 TO and five TCIIa), Rhodnius spp, (13 TCI and nine TCIIa), and humans with Chagas disease associated with oral transmission (14 TO and five TCIIa) in Brazilian Amazonia. To our knowledge, TCIIa had not been associated with wild monkeys until now. Polymorphisms of ssrDNA, cytochrome b gene sequences and randomly amplified polymorphic DNA (RAPD) patterns clearly separated TCIIa from TCIIb-e and TCI lineages, and disclosed small intra-lineage polymorphisms amongst isolates from Amazonia. These data are important in understanding the complexity of the transmission cycles, genetic structure, and evolutionary history of T cruzi populations circulating in Amazonia, and they contribute to both the unravelling of human infection routes and the pathological peculiarities of Chagas disease in this region. (C) 2008 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
A karyotype analysis of the electric eel, Electrophorus electricus (Teleostei, Gymnotiformes), a strongly electric fish from northern South America, is presented. Two female specimens were analyzed, one from the Amazon River and one from the Araguaia River. The specimens had a chromosomal number of 2n = 52 (42M-SM + 10A). C-bands were present in a centromeric and pericentromeric position on part of the chromosomes; some interstitial C-bands were also present. Heteromorphic nucleolus organizer regions (NORs) were detected in two chromosome pairs of the specimen from the Amazon River. The chromosome number and karyotype characteristics are similar to those of other Gymnotidae species. The genera Electrophorus and Gymnotus are positioned as the basal lineages in the Gymnotiformes phylogeny.
Resumo:
Since the discovery of Trypanosoma cruzi and the brilliant description of the then-referred to "new tripanosomiasis" by Carlos Chagas 100 years ago, a great deal of scientific effort and curiosity has been devoted to understanding how this parasite invades and colonises mammalian host cells. This is a key step in the survival of the parasite within the vertebrate host, and although much has been learned over this century, differences in strains or isolates used by different laboratories may have led to conclusions that are not as universal as originally interpreted. Molecular genotyping of the CL-Brener clone confirmed a genetic heterogeneity in the parasite that had been detected previously by other techniques, including zymodeme or schizodeme (kDNA) analysis. T. cruzi can be grouped into at least two major phylogenetic lineages: T. cruzi I, mostly associated with the sylvatic cycle and T. cruzi II, linked to human disease; however, a third lineage, T. cruziIII, has also been proposed. Hybrid isolates, such as the CL-Brener clone, which was chosen for sequencing the genome of the parasite (Elias et al. 2005, El Sayed et al. 2005a), have also been identified. The parasite must be able to invade cells in the mammalian host, and many studies have implicated the flagellated trypomastigotes as the main actor in this process. Several surface components of parasites and some of the host cell receptors with which they interact have been described. Herein, we have attempted to identify milestones in the history of understanding T. cruzi- host cell interactions. Different infective forms of T. cruzi have displayed unexpected requirements for the parasite to attach to the host cell, enter it, and translocate between the parasitophorous vacuole to its final cytoplasmic destination. It is noteworthy that some of the mechanisms originally proposed to be broad in function turned out not to be universal, and multiple interactions involving different repertoires of molecules seem to act in concert to give rise to a rather complex interplay of signalling cascades involving both parasite and cellular components.
Resumo:
We present a molecular phylogenetic analysis of caenophidian (advanced) snakes using sequences from two mitochondrial genes (12S and 16S rRNA) and one nuclear (c-mos) gene (1681 total base pairs), and with 131 terminal taxa sampled from throughout all major caenophidian lineages but focussing on Neotropical xenodontines. Direct optimization parsimony analysis resulted in a well-resolved phylogenetic tree, which corroborates some clades identified in previous analyses and suggests new hypotheses for the composition and relationships of others. The major salient points of our analysis are: (1) placement of Acrochordus, Xenodermatids, and Pareatids as successive outgroups to all remaining caenophidians (including viperids, elapids, atractaspidids, and all other "colubrid" groups); (2) within the latter group, viperids and homalopsids are sucessive sister clades to all remaining snakes; (3) the following monophyletic clades within crown group caenophidians: Afro-Asian psammophiids (including Mimophis from Madagascar), Elapidae (including hydrophiines but excluding Homoroselaps), Pseudoxyrhophiinae, Colubrinae, Natricinae, Dipsadinae, and Xenodontinae. Homoroselaps is associated with atractaspidids. Our analysis suggests some taxonomic changes within xenodontines, including new taxonomy for Alsophis elegans, Liophis amarali, and further taxonomic changes within Xenodontini and the West Indian radiation of xenodontines. Based on our molecular analysis, we present a revised classification for caenophidians and provide morphological diagnoses for many of the included clades; we also highlight groups where much more work is needed. We name as new two higher taxonomic clades within Caenophidia, one new subfamily within Dipsadidae, and, within Xenodontinae five new tribes, six new genera and two resurrected genera. We synonymize Xenoxybelis and Pseudablabes with Philodryas; Erythrolamprus with Liophis; and Lystrophis and Waglerophis with Xenodon.
Resumo:
Xylella fastidiosa is a Gram negative plant pathogen causing many economically important diseases, and analyses of completely sequenced X. fastidiosa genome strains allowed the identification of many prophage-like elements and possibly phage remnants, accounting for up to 15% of the genome composition. To better evaluate the recent evolution of the X. fastidiosa chromosome backbone among distinct pathovars, the number and location of prophage-like regions on two finished genomes (9a5c and Temecula1), and in two candidate molecules (Ann1 and Dixon) were assessed. Based on comparative best bidirectional hit analyses, the majority (51%) of the predicted genes in the X. fastidiosa prophage-like regions are related to structural phage genes belonging to the Siphoviridae family. Electron micrograph reveals the existence of putative viral particles with similar morphology to lambda phages in the bacterial cell in planta. Moreover, analysis of microarray data indicates that 9a5c strain cultivated under stress conditions presents enhanced expression of phage anti-repressor genes, suggesting switches from lysogenic to lytic cycle of phages under stress-induced situations. Furthermore, virulence-associated proteins and toxins are found within these prophage-like elements, thus suggesting an important role in host adaptation. Finally, clustering analyses of phage integrase genes based on multiple alignment patterns reveal they group in five lineages, all possessing a tyrosine recombinase catalytic domain, and phylogenetically close to other integrases found in phages that are genetic mosaics and able to perform generalized and specialized transduction. Integration sites and tRNA association is also evidenced. In summary, we present comparative and experimental evidence supporting the association and contribution of phage activity on the differentiation of Xylella genomes.
Resumo:
Background: With nearly 1,100 species, the fish family Characidae represents more than half of the species of Characiformes, and is a key component of Neotropical freshwater ecosystems. The composition, phylogeny, and classification of Characidae is currently uncertain, despite significant efforts based on analysis of morphological and molecular data. No consensus about the monophyly of this group or its position within the order Characiformes has been reached, challenged by the fact that many key studies to date have non-overlapping taxonomic representation and focus only on subsets of this diversity. Results: In the present study we propose a new definition of the family Characidae and a hypothesis of relationships for the Characiformes based on phylogenetic analysis of DNA sequences of two mitochondrial and three nuclear genes (4,680 base pairs). The sequences were obtained from 211 samples representing 166 genera distributed among all 18 recognized families in the order Characiformes, all 14 recognized subfamilies in the Characidae, plus 56 of the genera so far considered incertae sedis in the Characidae. The phylogeny obtained is robust, with most lineages significantly supported by posterior probabilities in Bayesian analysis, and high bootstrap values from maximum likelihood and parsimony analyses. Conclusion: A monophyletic assemblage strongly supported in all our phylogenetic analysis is herein defined as the Characidae and includes the characiform species lacking a supraorbital bone and with a derived position of the emergence of the hyoid artery from the anterior ceratohyal. To recognize this and several other monophyletic groups within characiforms we propose changes in the limits of several families to facilitate future studies in the Characiformes and particularly the Characidae. This work presents a new phylogenetic framework for a speciose and morphologically diverse group of freshwater fishes of significant ecological and evolutionary importance across the Neotropics and portions of Africa.
Resumo:
Background: Baurusuchidae is a group of extinct Crocodyliformes with peculiar, dog-faced skulls, hypertrophied canines, and terrestrial, cursorial limb morphologies. Their importance for crocodyliform evolution and biogeography is widely recognized, and many new taxa have been recently described. In most phylogenetic analyses of Mesoeucrocodylia, the entire clade is represented only by Baurusuchus pachecoi, and no work has attempted to study the internal relationships of the group or diagnose the clade and its members. Methodology/Principal Findings: Based on a nearly complete skull and a referred partial skull and lower jaw, we describe a new baurusuchid from the Vale do Rio do Peixe Formation (Bauru Group), Late Cretaceous of Brazil. The taxon is diagnosed by a suite of characters that include: four maxillary teeth, supratemporal fenestra with equally developed medial and anterior rims, four laterally visible quadrate fenestrae, lateral Eustachian foramina larger than medial Eustachian foramen, deep depression on the dorsal surface of pterygoid wing. The new taxon was compared to all other baurusuchids and their internal relationships were examined based on the maximum parsimony analysis of a discrete morphological data matrix. Conclusion: The monophyly of Baurusuchidae is supported by a large number of unique characters implying an equally large morphological gap between the clade and its immediate outgroups. A complex phylogeny of baurusuchids was recovered. The internal branch pattern suggests two main lineages, one with a relatively broad geographical range between Argentina and Brazil (Pissarrachampsinae), which includes the new taxon, and an endemic clade of the Bauru Group in Brazil (Baurusuchinae).