31 resultados para Powerline, Extraction, Remote Sensing
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Cloud-aerosol interaction is a key issue in the climate system, affecting the water cycle, the weather, and the total energy balance including the spatial and temporal distribution of latent heat release. Information on the vertical distribution of cloud droplet microphysics and thermodynamic phase as a function of temperature or height, can be correlated with details of the aerosol field to provide insight on how these particles are affecting cloud properties and their consequences to cloud lifetime, precipitation, water cycle, and general energy balance. Unfortunately, today's experimental methods still lack the observational tools that can characterize the true evolution of the cloud microphysical, spatial and temporal structure in the cloud droplet scale, and then link these characteristics to environmental factors and properties of the cloud condensation nuclei. Here we propose and demonstrate a new experimental approach (the cloud scanner instrument) that provides the microphysical information missed in current experiments and remote sensing options. Cloud scanner measurements can be performed from aircraft, ground, or satellite by scanning the side of the clouds from the base to the top, providing us with the unique opportunity of obtaining snapshots of the cloud droplet microphysical and thermodynamic states as a function of height and brightness temperature in clouds at several development stages. The brightness temperature profile of the cloud side can be directly associated with the thermodynamic phase of the droplets to provide information on the glaciation temperature as a function of different ambient conditions, aerosol concentration, and type. An aircraft prototype of the cloud scanner was built and flew in a field campaign in Brazil. The CLAIM-3D (3-Dimensional Cloud Aerosol Interaction Mission) satellite concept proposed here combines several techniques to simultaneously measure the vertical profile of cloud microphysics, thermodynamic phase, brightness temperature, and aerosol amount and type in the neighborhood of the clouds. The wide wavelength range, and the use of multi-angle polarization measurements proposed for this mission allow us to estimate the availability and characteristics of aerosol particles acting as cloud condensation nuclei, and their effects on the cloud microphysical structure. These results can provide unprecedented details on the response of cloud droplet microphysics to natural and anthropogenic aerosols in the size scale where the interaction really happens.
Resumo:
Earthen mounds with archaeological artifacts have been well known in Marajo Island since the 19th century. Their documented dimensions are impressive, e.g., up to 20m high, and with areas large as 90 ha. The mounds, locally known as lesos, impose a significant. relief on the very low-lying landscape of this region, which averages 4 to 6 in above present. sea level. These features have been traditionally interpreted as artificial constructions of the Marajoara culture, designed for defense, cemetery purposes, or escape from flooding. Here, we provide sedimentological and geomorphological data that suggest an alternative origin for these structures that is more consistent with their monumental sizes. Rather than artificial, the Marajoara tesos seem to consist of natural morphological features related to late Pleistocene and Holocene fluvial, and possibly tidal-influenced, paleochannels and paleobars that became abandoned as depositional conditions changed through dine. Although utilized and modified by the Marajoara since at least 2000 years ago, these earthen mounds contain a significant non-anthropogenically modified sedimentary substratum. Therefore, the large Marajoara tesos are not entirely artificial. Ancient, Marajoara cultures took advantage of these natural, preexisting elevated surfaces to base their communities and develop their activities, locally increasing the sizes of these fluvial landforms. This alternative interpretation suggests less cumulative labor investment, in the construction of the mounds and might. have significant implications for reconstructing the organization of the Marajoara culture. (C) 2009 Wiley Periodicals, Inc.
Resumo:
Marajó Island shows an abundance of paleochannels easily mapped in its eastern portion, where vegetation consists mostly of savannas. SRTM data make possible to recognize paleochannels also in western Marajó, even considering the dense forest cover. A well preserved paleodrainage network from the adjacency of the town of Breves (southwestern Marajó Island) was investigated in this work combining remote sensing and sedimentological studies. The palimpsest drainage system consists of a large meander connected to narrower tributaries. Sedimentological studies revealed mostly sharp-based, fining upward sands for the channelized features, and interbedded muds and sands for floodplain areas. The sedimentary structures and facies successions are in perfect agreement with deposition in channelized and floodplain environments, as suggested by remote sensing mapping. The present study shows that this paleodrainage was abandoned during Late Pleistocene, slightly earlier than the Holocene paleochannel systems from the east part of the island. Integration of previous studies with the data available herein supports a tectonic origin, related to the opening of the Pará River along fault lineaments. This would explain the disappearance of large, north to northeastward migrating channel systems in southwestern Marajó Island, which were replaced by the much narrower, south to southeastward flowing modern channels.
Resumo:
The first known plan of the city of Sao Paulo, made in 1810 by Rufino Felizardo e Costa, is analyzed with emphasis on the cartographic and astronomical details: the precision, scale, magnetic declination, and orientation in relation to the north, the prime meridian, the precision of the coordinates (latitude and longitude) and others. An analytic methodology is followed, observing the plan and formulating questions. To answer then, resources of modern technologies are employed (digital cartography, GPS) as well as knowledge of the history of cartography. The work is justified by the fact that there are no cartographic studies about this important document.
Resumo:
This work is part of a research under construction since 2000, in which the main objective is to measure small dynamic displacements by using L1 GPS receivers. A very sensible way to detect millimetric periodic displacements is based on the Phase Residual Method (PRM). This method is based on the frequency domain analysis of the phase residuals resulted from the L1 double difference static data processing of two satellites in almost orthogonal elevation angle. In this article, it is proposed to obtain the phase residuals directly from the raw phase observable collected in a short baseline during a limited time span, in lieu of obtaining the residual data file from regular GPS processing programs which not always allow the choice of the aimed satellites. In order to improve the ability to detect millimetric oscillations, two filtering techniques are introduced. One is auto-correlation which reduces the phase noise with random time behavior. The other is the running mean to separate low frequency from the high frequency phase sources. Two trials have been carried out to verify the proposed method and filtering techniques. One simulates a 2.5 millimeter vertical antenna displacement and the second uses the GPS data collected during a bridge load test. The results have shown a good consistency to detect millimetric oscillations.
Resumo:
We introduce the Coupled Aerosol and Tracer Transport model to the Brazilian developments on the Regional Atmospheric Modeling System (CATT-BRAMS). CATT-BRAMS is an on-line transport model fully consistent with the simulated atmospheric dynamics. Emission sources from biomass burning and urban-industrial-vehicular activities for trace gases and from biomass burning aerosol particles are obtained from several published datasets and remote sensing information. The tracer and aerosol mass concentration prognostics include the effects of sub-grid scale turbulence in the planetary boundary layer, convective transport by shallow and deep moist convection, wet and dry deposition, and plume rise associated with vegetation fires in addition to the grid scale transport. The radiation parameterization takes into account the interaction between the simulated biomass burning aerosol particles and short and long wave radiation. The atmospheric model BRAMS is based on the Regional Atmospheric Modeling System (RAMS), with several improvements associated with cumulus convection representation, soil moisture initialization and surface scheme tuned for the tropics, among others. In this paper the CATT-BRAMS model is used to simulate carbon monoxide and particulate material (PM(2.5)) surface fluxes and atmospheric transport during the 2002 LBA field campaigns, conducted during the transition from the dry to wet season in the southwest Amazon Basin. Model evaluation is addressed with comparisons between model results and near surface, radiosondes and airborne measurements performed during the field campaign, as well as remote sensing derived products. We show the matching of emissions strengths to observed carbon monoxide in the LBA campaign. A relatively good comparison to the MOPITT data, in spite of the fact that MOPITT a priori assumptions imply several difficulties, is also obtained.
Resumo:
Geodetic observations are affected by the disturbing potential of the luni-solar tide. Among those observations, the value of g obtained from gravimetric survey needs correction by the gravimetric factor. This correction is derived from the Numbers of Love, which depend on the adopted model of Earth. Because of this, it is necessary to update the correction since the gravimetric factor widely used in Brazil as delta = 1.20 does not consider local rheological variations and they are latitude dependent. A discrepancy of about 1% between the observed tidal gravimetric factors d of the ""Trans World Tidal Gravity Profiles"" (TWTGP), related to Brussels fundamental station, and those obtained by recent observations reported by Freitas and Ducarme ( 1991). Experiments based on inertial force effects also reveal a variation of about 0.5% in the observed d. A same order of magnitude difference is obtained for an anelastic Earth model when compared with a viscous-elastic model and even when different frequencies of tidal perturbations are considered. In this paper regression models are presented for gravimetric factors for the lunar components O(1) and M(2) in Brazil. These models were obtained from observations performed at stations belonging to the Brazilian segment of the TWTGP.
Resumo:
The least squares collocation is a mathematical technique which is used in Geodesy for representation of the Earth's anomalous gravity field from heterogeneous data in type and precision. The use of this technique in the representation of the gravity field requires the statistical characteristics of data through covariance function. The covariances reflect the behavior of the gravity field, in magnitude and roughness. From the statistical point of view, the covariance function represents the statistical dependence among quantities of the gravity field at distinct points or, in other words, shows the tendency to have the same magnitude and the same sign. The determination of the covariance functions is necessary either to describe the behavior of the gravity field or to evaluate its functionals. This paper aims at presenting the results of a study on the plane and spherical covariance functions in determining gravimetric geoid models.
Resumo:
We describe an estimation technique for biomass burning emissions in South America based on a combination of remote-sensing fire products and field observations, the Brazilian Biomass Burning Emission Model (3BEM). For each fire pixel detected by remote sensing, the mass of the emitted tracer is calculated based on field observations of fire properties related to the type of vegetation burning. The burnt area is estimated from the instantaneous fire size retrieved by remote sensing, when available, or from statistical properties of the burn scars. The sources are then spatially and temporally distributed and assimilated daily by the Coupled Aerosol and Tracer Transport model to the Brazilian developments on the Regional Atmospheric Modeling System (CATT-BRAMS) in order to perform the prognosis of related tracer concentrations. Three other biomass burning inventories, including GFEDv2 and EDGAR, are simultaneously used to compare the emission strength in terms of the resultant tracer distribution. We also assess the effect of using the daily time resolution of fire emissions by including runs with monthly-averaged emissions. We evaluate the performance of the model using the different emission estimation techniques by comparing the model results with direct measurements of carbon monoxide both near-surface and airborne, as well as remote sensing derived products. The model results obtained using the 3BEM methodology of estimation introduced in this paper show relatively good agreement with the direct measurements and MOPITT data product, suggesting the reliability of the model at local to regional scales.
Resumo:
Tropical ecosystems play a large and complex role in the global carbon cycle. Clearing of natural ecosystems for agriculture leads to large pulses of CO(2) to the atmosphere from terrestrial biomass. Concurrently, the remaining intact ecosystems, especially tropical forests, may be sequestering a large amount of carbon from the atmosphere in response to global environmental changes including climate changes and an increase in atmospheric CO(2). Here we use an approach that integrates census-based historical land use reconstructions, remote-sensing-based contemporary land use change analyses, and simulation modeling of terrestrial biogeochemistry to estimate the net carbon balance over the period 1901-2006 for the state of Mato Grosso, Brazil, which is one of the most rapidly changing agricultural frontiers in the world. By the end of this period, we estimate that of the state`s 925 225 km(2), 221 092 km(2) have been converted to pastures and 89 533 km(2) have been converted to croplands, with forest-to-pasture conversions being the dominant land use trajectory but with recent transitions to croplands increasing rapidly in the last decade. These conversions have led to a cumulative release of 4.8 Pg C to the atmosphere, with similar to 80% from forest clearing and 20% from the clearing of cerrado. Over the same period, we estimate that the residual undisturbed ecosystems accumulated 0.3 Pg C in response to CO2 fertilization. Therefore, the net emissions of carbon from Mato Grosso over this period were 4.5 Pg C. Net carbon emissions from Mato Grosso since 2000 averaged 146 Tg C/yr, on the order of Brazil`s fossil fuel emissions during this period. These emissions were associated with the expansion of croplands to grow soybeans. While alternative management regimes in croplands, including tillage, fertilization, and cropping patterns promote carbon storage in ecosystems, they remain a small portion of the net carbon balance for the region. This detailed accounting of a region`s carbon balance is the type of foundation analysis needed by the new United Nations Collaborative Programmme for Reducing Emissions from Deforestation and Forest Degradation (REDD).
Resumo:
The Brazilian Amazon is one of the most rapidly developing agricultural frontiers in the world. The authors assess changes in cropland area and the intensification of cropping in the Brazilian agricultural frontier state of Mato Grosso using remote sensing and develop a greenhouse gas emissions budget. The most common type of intensification in this region is a shift from single-to double-cropping patterns and associated changes in management, including increased fertilization. Using the enhanced vegetation index (EVI) from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor, the authors created a green-leaf phenology for 2001-06 that was temporally smoothed with a wavelet filter. The wavelet-smoothed green-leaf phenology was analyzed to detect cropland areas and their cropping patterns. The authors document cropland extensification and double-cropping intensification validated with field data with 85% accuracy for detecting croplands and 64% and 89% accuracy for detecting single-and double-cropping patterns, respectively. The results show that croplands more than doubled from 2001 to 2006 to cover about 100 000 km(2) and that new double-cropping intensification occurred on over 20% of croplands. Variations are seen in the annual rates of extensification and double-cropping intensification. Greenhouse gas emissions are estimated for the period 2001-06 due to conversion of natural vegetation and pastures to row-crop agriculture in Mato Grosso averaged 179 Tg CO(2)-e yr(-1),over half the typical fossil fuel emissions for the country in recent years.
Resumo:
Since 2000, the southwestern Brazilian Amazon has undergone a rapid transformation from natural vegetation and pastures to row-crop agricultural with the potential to affect regional biogeochemistry. The goals of this research are to assess wavelet algorithms applied to MODIS time series to determine expansion of row-crops and intensification of the number of crops grown. MODIS provides data from February 2000 to present, a period of agricultural expansion and intensification in the southwestern Brazilian Amazon. We have selected a study area near Comodoro, Mato Grosso because of the rapid growth of row-crop agriculture and availability of ground truth data of agricultural land-use history. We used a 90% power wavelet transform to create a wavelet-smoothed time series for five years of MODIS EVI data. From this wavelet-smoothed time series we determine characteristic phenology of single and double crops. We estimate that over 3200 km(2) were converted from native vegetation and pasture to row-crop agriculture from 2000 to 2005 in our study area encompassing 40,000 km(2). We observe an increase of 2000 km(2) of agricultural intensification, where areas of single crops were converted to double crops during the study period. (C) 2007 Elsevier Inc. All rights reserved.
Resumo:
The present work integrates sedimentary facies, (14)C dating, delta(13)C, delta(15)N, and C/N with geologic and geomorphologic data available from literature. The aim was to characterize the depositional settings of a late Quaternary estuary in northeastern Marajo Island and analyze its evolution within the context of relative sea level fluctuations. The data derive from four continuous cores along a proximal-to-distal transect of a paleoestuary, previously recognized using remote sensing information. Fifteen sediment samples recorded ages ranging from 42,580 +/- 1430 to 3184 +/- 37 (14)C yr B.P. Fades analysis indicated fine- to coarse-grained sands with parallel lamination or cross stratification, massive or laminated muds and heterolithic deposits. delta(13)C (-28.1 parts per thousand to -19.7 parts per thousand, mean = -23.0 parts per thousand), delta(15)N (+ 14.8 parts per thousand to + 4.7 parts per thousand, mean = + 9.2 parts per thousand) and C/N (14.5 to 1.5, mean = 7.9) indicate mostly marine and freshwater phytoplankton sources for the organic matter. The results confirm a large late Quaternary paleoestuary in northeastern Marajo Island. The distribution of delta(13)C, delta(15)N, and C/N, together with fades associations, led to identify depositional settings related to fluvial channel, floodplain, tidal channel/tidal flat, central basin, tidal delta, and tidal inlet/sand barrier. These deposits are consistent with a wave-dominated estuary. Variations in stratigraphy and geochemistry are controlled by changes in relative sea level, revealing a main transgression from an undetermined time around 42,000 (14)C yr B.P. and 29,340 (+/- 200) (14)C yr B.P., which is synchronous to the overall drop in sea level after the last interglacial. Following this period, and probably until 9110 +/- 37 (14)C yr B.P., i.e., during a time interval encompassing two glacial episodes including the Last Glacial and the Younger Dryas, there was a pronounced drop in sea level, recorded by the development of a major erosional discontinuity due to valley re-incision. Sea level rose again until 5464 +/- 40 (14)C yr B.P, just before the main worldwide mid-Holocene transgressive peak. Mid to late Holocene coastal progradation ended the Marajo paleoestuarine history, and promoted the establishment of continental conditions throughout the island. The divergence comparing the Marajo sea level behavior with the eustatic curve allows hypothesizing that post-rifting tectonics along the Brazilian Equatorial margin influenced the sedimentary evolution of the studied paleoestuary. Considering that sedimentary facies in estuarine settings are highly variable both laterally and vertically, the present integration of facies with isotope and elemental analyses was crucial to provide a more precise interpretation of the Late Pleistocene and Holocene Marajo paleoestuary, and analyze its sea level history within the eustatic and tectonic context. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
This paper presents a proposal for a Quality Management System for a generic GNSS Surveying Company as an alternative for management and service quality improvements. As a result of the increased demand for GNSS measurements, a large number of new or restructured companies were established to operate in that market. Considering that GNSS surveying is a new process, some changes must be performed in order to accommodate the old surveying techniques and the old fashioned management to the new reality. This requires a new management model that must be based on a well-described procedure sequence aiming at the Total Management Quality for the company. The proposed Quality Management System was based on the requirements of the Quality System ISO 9000:2000, applied to the whole company, focusing on the productive process of GNSS surveying work.
Resumo:
Soil compaction, reflected by high bulk density, is an environmental degradation process and new technologies are being developed for its detection. Despite the proven efficiency of remote sensing, it has not been widely used for soil density. Our objective was to evaluate the density of two soils: a Typic Quartzpisament (TQ) and a Rhodic Paleudalf (RP), using spectral reflectance obtained by a laboratory spectroradiometer between 450 and 2500 nm. Undisturbed samples were taken at two depths (0-20 and 60-80 cm), and were artificially compacted. Spectral data, obtained before and after compaction, were compared for both wet and dried compacted samples. Results demonstrated that soil density was greater in RP than in TQ at both depths due to its clayey texture. Spectral data detected high density (compacted) from low density (non-compacted) clayey soils under both wet and dry conditions. The detection of density in sandy soils by spectral reflectance was not possible. The intensity of spectral reflectance of high soil bulk density (compacted) samples was higher than for low density (non-compacted) soils due to changes in soil structure and porosity. Dry samples with high bulk density showed differences in the spectral intensity, but not in the absorption features. Wet samples in equal condition had statistically higher reflectance intensity than that of the low soil bulk density (non-compacted), and absorption differences at 1920 nm, which was due to the altered position of the water molecules. Soil line and spectral reflectance used together could detect soil bulk density variations for the clay soil. This technique could assist in the detection of high soil density in the laboratory by providing new soil information.