9 resultados para Pore Constriction

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: To verify if uterine cerclage can induce craniosynostosis or any cranial deformity in new born Wistar rats. METHODS: One pregnant female Wistar rat underwent laparotomy on day 18 of gestation and the uterus cervix was closed with a 3-0 nylon suture to avoid delivery, that occurs normally on the 21 day. The suture was released after 48 hours beyond the normal gestation period. The female rat delivered 11 pups. Six surviving rats from the delivery (group A - constrained group). Two rats were born from another mother and in the same age were used as control group (group B - 2 nonconstrained controls) were allowed to grow. They were sacrificed 1.2 years after their birth all the eight animals. Linear measurement, routine histology and computed tomography of the skull were performed at the time of their death to evaluate the cranial asymmetries by mesurements of the anatomical landmarks of the craniofacial skeleton of the rats on the two groups and compared then. RESULTS: We did not observe statistically significant differences in any of the compared measurements (p>0.05) obtained through the morphologic and radiologic methods. Histologic examinations did not reveal any sign of premature fusion or suture imbrications. Critical decrease in longitudinal body size was noticed as the limbs too in all the animals of group A. CONCLUSION: Constriction of uterine cervix leads to fetus suffering, even death for a few animals, associated to small body size, but not to craniosynostosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mitochondrial membrane carriers containing proline and cysteine, such as adenine nucleotide translocase (ANT), are potential targets of cyclophilin D (CyP-D) and potential Ca(2+)-induced permeability transition pore (PTP) components or regulators; CyP-D, a mitochondrial peptidyl-prolyl cis-trans isomerase, is the probable target of the PTP inhibitor cyclosporine A (CsA). In the present study, the impact of proline isomerization (from trans to cis) on the mitochondrial membrane carriers containing proline and cysteine was addressed using ANT as model. For this purpose, two different approaches were used: (i) Molecular dynamic (MD) analysis of ANT-Cys(56) relative mobility and (ii) light scattering techniques employing rat liver isolated mitochondria to assess both Ca(2+)-induced ANT conformational change and mitochondrial swelling. ANT-Pro(61) isomerization increased ANT-Cys(56) relative mobility and, moreover, desensitized ANT to the prevention of this effect by ADP. In addition, Ca(2+) induced ANT ""c"" conformation and opened PTP; while the first effect was fully inhibited, the second was only attenuated by CsA or ADP. Atractyloside (ATR), in turn, stabilized Ca(2+)-induced ANT ""c"" conformation, rendering the ANT conformational change and PTP opening less sensitive to the inhibition by CsA or ADP. These results suggest that Ca(2+) induces the ANT ""c"" conformation, apparently associated with PTP opening, but requires the CyP-D peptidyl-prolyl cis-trans isomerase activity for sustaining both effects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Legionella pneumophila, the etiological agent of Legionnaires disease, is known to trigger pore formation in bone marrow-derived macrophages (BMMs) by mechanisms dependent on the type IVB secretion system known as Dot/Icm. Here, we used several mutants of L. pneumophila in combination with knockout mice to assess the host and bacterial factors involved in pore formation in BMMs. We found that regardless of Dot/Icm activity, pore formation does not occur in BMMs deficient in caspase-1 and Nlrc4/Ipaf. Pore formation was temporally associated with interleukin-1 beta secretion and preceded host cell lysis and pyroptosis. Pore-forming ability was dependent on bacterial Dot/Icm but independent of several effector proteins, multiplication, and de novo protein synthesis. Flagellin, which is known to trigger the Nlrc4 inflammasome, was required for pore formation as flaA mutant bacteria failed to induce cell permeabilization. Accordingly, transfection of purified flagellin was sufficient to trigger pore formation independent of infection. By using 11 different Legionella species, we found robust pore formation in response to L. micdadei, L. bozemanii, L. gratiana, L. jordanis, and L. rubrilucens, and this trait correlated with flagellin expression by these species. Together, the results suggest that pore formation is neither L. pneumophila specific nor the result of membrane damage induced by Dot/Icm activity; instead, it is a highly coordinated host cell response dependent on host Nlrc4 and caspase-1 and on bacterial flagellin and type IV secretion system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction. Diabetes is a risk factor for female sexual dysfunction (FSD). FSD has several etiologies, including a vasculogenic component that could be exacerbated in diabetes. The internal pudendal artery supplies blood to the vagina and clitoris and diabetes-associated functional abnormalities in this vascular bed may contribute to FSD. Aim. The Goto-Kakizaki (GK) rat is a non-obese model of type 2 diabetes with elevated endothelin-1 (ET-1) activity. We hypothesize that female GK rats have diminished sexual responses and that the internal pudendal arteries demonstrate increased ET-1 constrictor sensitivity. Methods. Female Wistar and GK rats were used. Apomorphine (APO)-mediated genital vasocongestive arousal (GVA) was measured. Functional contraction (ET-1 and phenylephrine) and relaxation (acetylcholine, ACh) in the presence or absence of the ETA receptor antagonist (ET(A)R; atrasentan) or Rho-kinase inhibitor (Y-27632) were assessed in the internal pudendal and mesenteric arteries. Protein expression of ET-1 and RhoA/Rho-kinase signaling pathway was determined in the internal pudendal and mesenteric arteries. Main Outcome Measure. APO-mediated GVAs; contraction and relaxation of internal pudendal and mesenteric arteries; ET-1/RhoA/Rho-kinase protein expression. Results. GK rats demonstrated no APO-induced GVAs. Internal pudendal arteries, but not mesenteric arteries, from GK rats exhibited greater contractile sensitivity to ET-1 compared with Wistar arteries. ETAR blockade reduced ET-1-mediated constriction in GK internal pudendal and mesenteric arteries. Rho-kinase inhibition reduced ET-1-mediated constriction of GK internal pudendal but not mesenteric arteries; however, it had no effect on arteries from Wistar rats. RhoA protein expression was elevated in GK internal pudendal arteries. At the highest concentrations, ACh-mediated relaxation was greater in the GK internal pudendal artery; however, no difference was observed in the mesenteric artery. Conclusions. Female GK rats demonstrate decreased sexual responses that may be because of increased constrictor sensitivity to the ET-1/RhoA/Rho-kinase signaling in the internal pudendal artery. Allahdadi KJ, Hannan JL, Ergul A, Tostes RC, and Webb RC. Internal pudendal artery from type 2 diabetic female rats demonstrate elevated endothelin-1-mediated constriction. J Sex Med 2011;8:2472-2483.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Eumenitin, a novel cationic antimicrobial peptide from the venom of solitary wasp Eumenes rubronotatus, was characterized by its effects on black lipid membranes of negatively charged (azolectin) and zwitterionic (1,2-diphytanoyl-sn-glycero-3-phosphocholine (DPhPC) or DPhPC-cholesterol) phospholipids: surface potential changes, single-channel activity, ion selectivity, and pore size were studied. We found that eumenitin binds preferentially to charged lipid membranes as compared with zwitterionic ones. Eumenitin is able to form pores in azolectin (G(1) = 118.00 +/- 3.67 pS or G(2) = 160.00 +/- 7.07 pS) and DPhPC membranes (G = 61.13 +/- 7.57 pS). Moreover, cholesterol addition to zwitterionic DPhPC membranes inhibits pore formation activity but does not interfere with the binding of peptide. Open pores presented higher cation (K (+)) over anion (Cl-) selectivity. The pore diameter was estimated at between 8.5and 9.8 angstrom in azolectin membranes and about 4.3 angstrom in DPhPC membranes. The results are discussed based on the toroidal pore model for membrane pore-forming activity and ion selectivity. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Epithelial invagination in many model systems is driven by apical cell constriction, mediated by actin and myosin II contraction regulated by GTPase activity. Here we investigate apical constriction during chick lens placode invagination. Inhibition of actin polymerization and myosin II activity by cytochalasin D or blebbistatin prevents lens invagination. To further verify if lens placode invaginate through apical constriction, we analyzed the role of Rho-ROCK pathway. Rho GTPases expression at the apical portion of the lens placode occurs with the same dynamics as that of the cytoskeleton. Overexpression of the pan-Rho inhibitor C3 exotoxin abolished invagination and had a strong effect on apical myosin II enrichment and a mild effect on apical actin localization. In contrast, pharmacological inhibition of ROCK activity interfered significantly with apical enrichment of both actin and myosin. These results suggest that apical constriction in lens invagination involves ROCK but apical concentration of actin and myosin are regulated through different pathways upstream of ROCK. genesis 49: 368-379, 2011. (C) 2011 Wiley-Liss, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Large pore ordered mesoporous silica FDU-1 with three-dimensional (3D) face-centered cubic, Fm3m arrangement of rnesopores, was synthesized under strong acid media using B-50-6600 poly(ethylene oxide)-poly(butylene oxide)-poly(ethylene oxide) triblock copolymer (EO(39)BO(47)EO(39)), tetraethyl orthosilicate (TEOS) and trimethyl-benzene (TMB). Large pore FDU-1 silica was obtained by using the following gel composition 1TEOS:0.00735B50-6600:0.00735TMB:6HCl:155H(2)O. The pristine material exhibited a BET specific surface area of 684 m(2) g(-1), total pore volume of 0.89 cm(3) g(-1), external surface area of 49 m(2) g(-1) and microporous volume of 0.09 cm(3) g(-1). The enzyme activity was determined by the Flow Injection Analysis-Chemiluminescence (FIA-CL) method. For GOD immobilized on the FDU-1 silica, GOD supernatant and GOD solution, the FIA-CL results were 9.0, 18.6 and 34.0 U, respectively. The value obtained for the activity of the GOD solution with FIA-CL method is in agreement with the 35 U, obtained by spectrophotometry. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Experimental evidence shows that the mechanism of pore formation by actinoporins is a multistep process, involving binding of the water-soluble monomer to the membrane and subsequent oligomerization on the membrane surface, leading to the formation of a functional pore. However, as for other eukaryotic pore-forming toxins, the molecular details of the mechanism of membrane insertion and oligomerization are not clear. In order to obtain further insight with regard to the structure-function relationship in sticholysins, we designed and produced three cysteine mutants of recombinant sticholysin I (rStI) in relevant functional regions for membrane interaction: StI E2C and StI F15C (in the N-terminal region) and StI R52C (in the membrane binding site). The conformational characterization derived from fluorescence and CD spectroscopic studies of StI E2C, StI F15C and StI R52C suggests that replacement of these residues by Cys in rStI did not noticeably change the conformation of the protein. The substitution by Cys of Arg(52) in the phosphocholine-binding site, provoked noticeable changes in rStI permeabilizing activity; however, the substitutions in the N-terminal region (Glu(2), Phe(15)) did not modify the toxin`s permeabilizing ability. The presence of a dimerized population stabilized by a disulfide bond in the StI E2C mutant showed higher pore-forming activity than when the protein is in the monomeric state, suggesting that sticholysins pre-ensembled at the N-terminal region could facilitate pore formation. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Triatoma infestans (Hemiptera: Reduviidae) is a hematophagous insect that transmits the protozoan parasite Trypanosoma cruzi, the etiological agent of Chagas` disease. Its saliva contains trialysin, a protein that forms pores in membranes. Peptides based on the N-terminus of trialysin lyse cells and fold into alpha-helical amphipathic segments resembling antimicrobial peptides. Using a specific antiserum against trialysin, we show here that trialysin is synthesized as a precursor that is less active than the protein released after saliva secretion. A synthetic peptide flanked by a fluorophore and a quencher including the acidic proregion and the lytic N-terminus of the protein is also less active against cells and liposomes, increasing activity upon proteolysis. Activation changes the peptide conformation as observed by fluorescence increase and CD spectroscopy. This mechanism of activation could provide a way to impair the toxic effects of trialysin inside the salivary glands, thus restricting damaging lytic activity to the bite site.