10 resultados para Polypeptide N-acetylgalactosaminyltransferases
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
The oral pathogen Streptococcus mutans expresses a surface protein, P1, which interacts with the salivary pellicle on the tooth surface or with fluid-phase saliva, resulting in bacterial adhesion or aggregation, respectively. P1 is a target of protective immunity. Its N-terminal region has been associated with adhesion and aggregation functions and contains epitopes recognized by efficacious antibodies. In this study, we used Bacillus subtilis, a gram-positive expression host, to produce a recombinant N-terminal polypeptide of P1 (P1(39-512)) derived from the S. mutans strain UA159. Purified P1(39-512) reacted with an anti-full-length P1 antiserum as well as one raised against intact S. mutans cells, indicating preserved antigenicity. Immunization of mice with soluble and heat-denatured P1(39-512) induced antibodies that reacted specifically with native P1 on the surface of S. mutans cells. The anti-P1(39-512) antiserum was as effective at blocking saliva-mediated aggregation of S. mutans cells and better at blocking bacterial adhesion to saliva-coated plastic surfaces compared with the anti-full-length P1 antiserum. In addition, adsorption of the anti-P1 antiserum with P1(39-512) eliminated its ability to block the adhesion of S. mutans cells to abiotic surfaces. The present results indicate that P1(39-512), expressed and purified from a recombinant B. subtilis strain, maintains important immunological features of the native protein and represents an additional tool for the development of anticaries vaccines.
Resumo:
The endosperm of seeds of Sesbania virgata (Cav.) Pers. accumulates galactomannan as a cell wall storage polysaccharide. It is hydrolysed by three enzymes, one of them being alpha-galactosidase. A great amount of protein bodies is found in the cytoplasm of endospermic cells, which are thought to play the major role as a nitrogen reserve in this seed. The present work aimed at understanding how the production of enzymes that degrade storage compounds is controlled. We performed experiments with addition of inhibitors of transcription (actinomycin-d and alpha-amanitin) and translation (cycloheximide) during and after germination. In order to follow the performance of storage mobilisation, we measured fresh mass, protein contents and alpha-galactosidase activity. All the inhibitors tested had little effect on seed germination and seedling development. Actinomycin-d and cycloheximide provoked a slight inhibition of the storage protein degradation and concomitantly lead to an elevation of the alpha-galactosidase activity. Although alpha-amanitin showed some effect on seedling development at latter stages, it presented the former effect and did not change galactomannan degradation performance. Our data suggest that some of the proteases may be synthesised de novo, whereas alpha-galactosidase seems to be present in the endosperm cells probably as an inactive polypeptide in the protein bodies, being probably activated by proteolysis when the latter organelle is disassembled. These evidences suggest the existence of a connection between storage proteins and carbohydrates mobilisation in seeds of S. virgata, which would play a role by assuring a balanced afflux of the carbon and nitrogen to the seedling development.
Resumo:
Crotoxin is the main neurotoxic component of Crotalus durissus terrificus snake venom and modulates immune and inflammatory responses, interfering with the activity of leukocytes. In the present work, the effects of crotoxin on the number of blood and lymphatic leukocytes and on lymph nodes and spleen lymphocytes population were investigated. The toxin s.c. administered to male Wistar rats, decreases the number of lymphocytes in blood and lymph circulation and increases the content of B and T-lymphocytes in lymph nodes. These effects were detected 1-2 h after treatment. The crotoxin molecule is composed of two subunits, an acidic non-toxic polypeptide, named crotapotin and a toxic basic phospholipase A(2) (PLA(2)). PLA(2), but not crotapotin, decreased the number of circulating blood and lymph lymphocytes. Crotoxin promotes leukocyte adherence to endothelial cells of blood microcirculation and to lymph node high endothelial venules, which might contribute to the drop in the number of circulating lymphocytes. Crotoxin increases expression of the adhesion molecule LFA-1 in lymphocytes. The changes in the expression of the adhesion molecule might contribute, at least in part, for the increased leukocyte adhesion to endothelium. Zileuton, a 5-lipoxygenase inhibitor, blocked the decrease in the number of circulating leukocytes induced by crotoxin and also abolished the changes observed in leukocyte-endothelial interactions, suggesting the involvement of lipoxygenase-derived mediators in the effects of the toxin. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Lonomia obliqua caterpillar bristle extract induces hemolysis in vitro on washed human and rat erythrocytes, in either the absence or presence of exogenous lecithin. In the former condition, phospholipases A(2) are key enzymes involved in hemolysis. However, the mechanism whereby this extract causes direct hemolysis is not known. Thus, the aim of this study was to investigate the hemolytic mechanism of the crude extract of the caterpillar L obliqua on human erythrocytes in the absence of lecithin. The extract significantly increased the erythrocyte osmotic fragility and promoted the removal of glycophorins A and C, and band 3 from the erythrocyte membrane. The use of Ca(2+) and Mg(2+) ions significantly potentiated glycoprotein removal, remarkably of erythrocyte band 3. The composition of fatty acids was analyzed by HPLC in both L obliqua caterpillar bristle extract and human erythrocyte membranes incubated with the extract. The levels of unsaturated fatty acids were remarkably augmented in erythrocytes incubated with the extract than in control erythrocytes, modifying thereby the saturated/unsaturated fatty acid ratio. Altogether, evidence is provided here that the interplay of at least three mechanisms of action accounts for the direct activity of the bristle extract on erythrocyte membrane, leading to hemolysis: the removal of glycoproteins and band 3; the insertion of fatty acids; and the action of phospholipases. Such mechanisms might affect erythrocyte flexibility and deformability, which may induce hemolysis by increasing erythrocyte fragility. However, whether the direct hemolytic activity of L obliqua caterpillar is the major cause of intravascular hemolysis during envenomation still needs further investigation. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
ORF 31 is a unique baculovirus gene in the genome of Anticarsia gemmatalis multiple nucleopolyhedrovirus isolate 2D (AgMNPV-2D). It encodes a putative polypeptide of 369 aa homologous to poly (ADP-ribose) polymerase (PARP) found in the genomes of several organisms. Moreover, we found a phylogenetic association with Group I PARP proteins and a 3D homology model of its conserved PARP C-terminal catalytic domain indicating that had almost an exact spatial superimposition of < 1 angstrom with other PARP available structures. The 5` end of ORF 31 mRNA was located at the first nucleotide of a CATT motif at position -27. Using real-time PCR we detected transcripts at 3 h post-infection (p.i.) increasing until 24 h p.i., which coincides with the onset of DNA replication, suggestive of a possible role in DNA metabolism.
Resumo:
In a recent study, we demonstrated the immunogenic properties of a new malaria vaccine polypeptide based on a 19 kDa C-terminal fragment of the merozoite surface protein-1 (MSP1(19)) from Plasmodium vivax and an innate immunity agonist, the Salmonella enterica serovar Typhimurium flagellin (FliC). Herein, we tested whether the same strategy, based on the MSP1(19) component of the deadly malaria parasite Plasmodium falciparum, could also generate a fusion polypeptide with enhanced immunogenicity. The His(6)FliC-MSP1(19) fusion protein was expressed from a recombinant Escherichia coil and showed preserved in vitro TLR5-binding activity. In contrast to animals injected with His(6)MSP1(19), mice subcutaneously immunised with the recombinant His6FliC-MSP1(19) developed strong MSP1(19)-specific systemic antibody responses with a prevailing IgG1 subclass. Incorporation of other adjuvants, such as CpG ODN 1826, complete and incomplete Freund`s adjuvants or Quil-A, improved the IgG responses after the second, but not the third, immunising dose. It also resulted in a more balanced IgG subclass response, as evaluated by the IgG1/IgG2c ratio, and higher cell-mediated immune response, as determined by the detection of antigen-specific interferon-gamma secretion by immune spleen cells. MSP(19)-specific antibodies recognised not only the recombinant protein, but also the native protein expressed on the surface of P. falciparum parasites. Finally, sera from rabbits immunised with the fusion protein alone inhibited the in vitro growth of three different P. falciparum strains. In summary, these results extend our previous observations and further demonstrate that fusion of the innate immunity agonist FliC to Plasmodium antigens is a promising alternative to improve their immunogenicity. (c) 2010 Elsevier Ltd. All rights reserved.
Resumo:
We describe the first application of a non-radioactive ligand-blotting technique to the characterization of proteins interacting with nematode vitellins. Chromatographically purified vitellins from the free-living nematode Oscheius tipulae were labeled with fluorescein in vitro. Ligand-blotting assays with horseradish peroxidase-conjugated anti-fluorescein antibodies showed that labeled vitellins reacted specifically with a polypeptide of approximately 100 kDa, which we named P100. This polypeptide is a specific worm`s vitellin-binding protein that is present only in adult worms. Blots containing purified O. tipulae vitellin preparations showed no detectable signal in the 100 kDa region, ruling out any possibility of yolk polypeptides self-assembling under the conditions used in our assay. Experiments done in the presence of alpha-methyl mannoside ruled out the possibility of vitellins binding to P100 through mannose residues. Triton X-114 fractionation of whole worm extracts showed that P100 is either a membrane protein or has highly hydrophobic regions. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
P>Scedosporium apiospermum is an emerging agent of opportunistic mycoses in humans. Previously, we showed that mycelia of S. apiospermum secreted metallopeptidases which were directly linked to the destruction of key host proteins. In this study, we analysed the effect of metallopeptidase inhibitors on S. apiospermum development. As germination of inhaled conidia is a crucial event in the infectious process of S. apiospermum, we studied the morphological transformation induced by the incubation of conidia in Sabouraud-dextrose medium at 37 degrees C. After 6 h, some conidia presented a small projection resembling a germ-tube. A significant increase, around sixfold, in the germ-tube length was found after 12 h, and hyphae were exclusively observed after 24 h. Three distinct metallopeptidase inhibitors were able to arrest the transformation of conidia into hyphae in different ways; for instance, 1,10-phenanthroline (PHEN) completely blocked this process at 10 mu mol l-1, while ethylenediamine tetraacetic acid (EDTA) and ethylene glycol-bis (beta-aminoethyl ether; EGTA) only partially inhibited the differentiation at up to 10 mmol l-1. EGTA did not promote any significant reduction in the conidial growth, while PHEN and EDTA, both at 10 mmol l-1, inhibited the proliferation around 100% and 65%, respectively. The secretion of polypeptides into the extracellular environment and the metallopeptidase activity secreted by mycelia were completely inhibited by PHEN. These findings suggest that metallo-type enzymes could be potential targets for future therapeutic interventions against S. apiospermum.
Resumo:
SBTX, a novel toxin from soybean, was purified by ammonium sulfate fractionation followed by chromatographic steps DEAE-Cellulose, CM-Sepharose and Superdex 200 HR fast-protein liquid chromatography (FPLC). Lethality of SBTX to mice (LD50 5.6 mg/kg) was used as parameter in the purification steps. SBTX is a 44-kDa basic glycoprotein composed of two polypeptide chains (27 and 17 kDa) linked by a disulfide bond. The N-terminal sequences of the 44 and 27 kDa chains were identical (ADPTFGFTPLGLSEKANLQIMKAYD), differing from that of 17 kDa (PNPKVFFDMTIGGQSAGRIVMEEYA). SBTX contains high levels of Glx, Ala, Asx, Gly and Lys and showed maximum absorption at 280 nm, epsilon(1 cm) (1%) of 6.3, and fluorescence emission in the 290-450nm range upon excitation at 280nm. The secondary structure content was 35% alpha-helix, 13% beta-strand and beta-sheet, 27% beta-turn, 25% unordered, and 1% aromatic residues. Immunological assays showed that SBTX was related to other toxic proteins, such as soyatoxin and canatoxin, and cross-reacted weekly with soybean trypsin inhibitor and agglutinin, but it was devoid of protease-inhibitory and hemagglutinating activities. The inhibitory effect of SBTX on growth of Cercospora sojina, fungus causing frogeye leaf spot in soybeans, was observed at 50 mu g/ml, concentration 112 times lesser than that found to be lethal to mice. This effect on phytopathogenic fungus is a potential attribute for the development of transgenic plants with enhanced resistance to pathogens. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Neutral trehalase from Neurospora crassa was expressed in Escherichia coli as a polypeptide of similar to 84 kDa in agreement with the theoretical size calculated from the corresponding cDNA. The recombinant neutral trehalase, purified by affinity chromatography exhibited a specific activity of 80-150 mU/mg protein. Optima of pH and temperature were 7.0 and 30 degrees C, respectively. The enzyme was absolutely specific for trehalose, and was quite sensitive to incubation at 40 degrees C. The recombinant enzyme was totally dependent on calcium, and was inhibited by ATP, copper, silver, aluminium and cobalt. K(M) was 42 mM, and V(max) was 30.6 nmol of glucose/min. The recombinant protein was phosphorylated by cAMP-dependent protein kinase, but not significantly activated. Immunoblotting with polyclonal antiserum prepared against the recombinant protein showed that neutral trehalase protein levels increased during exponential phase of N. crassa growth and dropped at the stationary phase. This is the first report of a neutral trehalase produced in E. coli with similar biochemical properties described for fungi native neutral trehalases, including calcium-dependence. (C) 2008 Elsevier Inc. All rights reserved.