7 resultados para Polyether ether ketones
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
The improvement of the enzymatic performance of Aspergillus terreus and Rhizopus oryzae in enantioselective bioreductions by using glycerol as a co-solvent has been studied. In the most of the bioreductions, glycerol has demonstrated its potential for improved conversions (up to >99%) and enantioselectivities (up to >99%) when compared to reactions in aqueous or other aqueous-organic media (THF, diethyl ether, toluene, DMSO and acetonitrile). Moreover, high isolated yields of the desired chiral alcohols have been obtained on a preparative scale showing the great potential of this green solvent in biocatalysis. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The objective of the present study was to evaluate the effects of different gamma radiation doses on the growth of Alternaria alternata and on the production of toxins alternariol (AOH), and alternariol monomethyl ether (AME) in sunflower seed samples. After irradiation with 2, 5 and 7 kGy, the spore mass was resuspended in sterile distilled water and the suspension was inoculated into sunflower seeds. The number of colony-forming units per gram (CFU/g) was determined after culture on Dichloran Rose Bengal Chloramphenicol and Dichloran Chloramphenicol Malt Extract Agar. The presence of AOH and AME was investigated by liquid chromatography coupled to mass spectrometry. The radiation doses used resulted in a reduction of the number of A. alternata CFU/g and of AOH and AME levels when compared to the nonirradiated control group. Maximum reduction of the fungus (98.5%) and toxins (99.9%) was observed at a dose of 7 and 5 kGy, respectively. Under the present conditions, gamma radiation was found to be an alternative for the control of A. alternata and, consequently, of AOH and AME production in sunflower seeds. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Allyl 1-naphthyl ethers are useful compounds for different purposes, but reported methods to synthesize them require long reaction times. In this work, we have obtained allyl 1-naphthyl ether in good yield using ultrasonic-assisted methodology in a 1-h reaction. A central composite design was used to obtain a statistical model and a response surface (p < 0.05; R(2) = 0.970; R(adj)(2) = 0.949; R(pred)(2) = 0.818) that can predict the optimal conditions to maximize the yield, validated experimentally. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The ionic liquids (ILs) 1-ethoxyethyl-2,3-dimethylimidazolium bis(trifluoromethanesulfonyl)imide, [EtO-(CH(2))(2)MMI][Tf(2)N], and N-(ethoxyethyl)-N-methylmorpholinium bis(trifluoromethanesulfonyl)imide, [EtO(CH(2))(2)MMor][Tf(2)N] were synthesized, and relevant properties, such as thermal stability, density, viscosity, electrochemical behavior, ionic conductivity, and self-diffusion coefficients for both ionic species, were measured and compared with those of their alkyl counterparts, 1-n-butyl-2,3-dimethylimidazolium bis(trifluoromethanesulfonyl)imide, [BMMI][Tf(2)N], and N-n-butyl-N-methylpiperidinium bis(trifluoromethanesulfonyl)imide,[BMP][Tf(2)N] and N-n-butyl-N-methylmorpholinium bis(trilfuoromethanesulfonyl)imide [BMMor][Tf(2)N][. This comparison was done to evaluate the effects caused by the presence of the ether bond in either the side chain or in the organic cation ring. The salt, LiTf(2)N, was added to the systems to estimate IL behavior with regard to lithium cation transport. Pure [EtO(CH(2))(2)MMI][Tf(2)N] and their LiTf(2)N solutions showed low viscosity and the highest conductivity among the ILs studied. The H(R) (AC conductivity/NMR calculated conductivity ratio) values showed that, after addition of LiTf(2)N, ILs containing the ether bond seemed to have a greater number of charged species. Structural reasons could explain these high observed HR values for [EtO(CH(2))(2)MMor][Tf(2)N].
Resumo:
A magnetically recoverable Pt(0) catalyst was prepared by in situ H(2) reduction of Pt(2+) species bound to an amino modified silica-coated magnetic nanoparticles. Compared to ordinary silica (maximum uptake Pt 0.03 wt%), the amino-functionalized silica surfaces were loaded with 1.95 wt% of metal. The supported Pt(0) nanoparticles exhibit high catalytic activity in the hydrogenation of alkenes and ketones under solventless mild reaction conditions. Partially hydrogenated products could also be isolated. The magnetic property of the catalyst grants a fast and efficient product isolation compared to traditional methods used in heterogeneous systems that generally make use of time- and solvent-consuming procedures. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Raman spectra of polymer electrolytes based on poly(ethylene glycol) dimethyl ether (PEGdME) with LiClO(4), PEGdME/LiClO(4), and the ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate, PEGdME/[bmim]PF(6), are compared. Raman spectroscopy suggests stronger interactions in PEGdME/LiClO(4) than PEGdmE/[bmim]PF(6), thus corroborating previous results obtained by molecular dynamics simulations. Quantum Chemistry methods have been used to calculate vibrational frequencies and the equilibrium structure of segments of the polymer chain around the cation. A consistent picture has been obtained from Raman spectroscopy, density functional theory (DFT) calculations, and molecular dynamics simulations for these polymer electrolytes. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The aim of this work was to evaluate the effect of the storage time on the thermal properties of triethylene glycol dimethacrylate/2,2-bis[4-(2-hydroxy-3-methacryloxy-prop-1-oxy)-phenyl]propane bisphenyl-alpha-glycidyl ether dimethacrylate (TB) copolymers used in formulations of dental resins after photopolymerization. The TB copolymers were prepared by photopolymerization with an Ultrablue IS light-emitting diode, stored in the dark for 160 days at 37 degrees C, and characterized with differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), and Fourier transform infrared spectroscopy with attenuated total reflection. DSC curves indicated the presence of an exothermic peak, confirming that the reaction was not completed during the photopolymerization process. This exothermic peak became smaller as a function of the storage time and was shifted at higher temperatures. In DMA studies, a plot of the loss tangent versus the temperature initially showed the presence of two well-defined peaks. The presence of both peaks confirmed the presence of residual monomers that were not converted during the photopolymerization process. (C) 2009 Wiley Periodicals, Inc. J Appl Polym Sci 112: 679-684, 2009