5 resultados para Plants, Nutrition of

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Biological invasions threaten the native biota of several countries and this threat is even greater in the tropical regions that have the greatest biodiversity. In order to evaluate the representativeness of studies on invasive plants in tropical countries compared to the world, as well as the region of origin and habits of the most reported invasive plants in research, we analyzed the publications from eight of the most important international journals that address the theme, from January 1995 to December 2004. The articles on biological invasions were classified as theoretical or as case studies, and according to their approach, main question, where the study was conducted, region of origin and habit of the invasive plant. Case studies predominated, as did questions about the environment`s susceptibility to the invasion, the species` invasive power and the impacts it had. The most reported invasive species were herbaceous plants from Asia and Europe. Few articles address tropical environments and only one referred to Brazil. Most referred to North America and Europe. This small number of publications in the tropics indicates the need for a global projection on this subject and underscores the lack of consistent and organized data to understand the phenomenon and propose effective strategies to combat biological invasion.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Background and Aims Several animals that live on bromeliads can contribute to plant nutrition through nitrogen provisioning (digestive mutualism). The bromeliad-living spider Psecas chapoda (Salticidae) inhabits and breeds on Bromelia balansae in regions of South America, but in specific regions can also appear on Ananas comosus (pineapple) plantations and Aechmea distichantha. Methods Using isotopic and physiological methods in greenhouse experiments, the role of labelled ((15)N) spider faeces and Drosophila melanogaster flies in the nutrition and growth of each host plant was evaluated, as well as seasonal variation in the importance of this digestive mutualism. Key Results Spiders contributed 0.6 +/- 0.2% (mean +/- s.e.; dry season) to 2.7 +/- 1% (wet season) to the total nitrogen in B. balansae, 2.4 +/- 0.4% (dry) to 4.1 +/- 0.3% (wet) in An. comosus and 3.8 +/- 0.4% (dry) to 5 +/- 1% (wet) in Ae. distichantha. In contrast, flies did not contribute to the nutrition of these bromeliads. Chlorophylls and carotenoid concentrations did not differ among treatments. Plants that received faeces had higher soluble protein concentrations and leaf growth (RGR) only during the wet season. Conclusions These results indicate that the mutualism between spiders and bromeliads is seasonally restricted, generating a conditional outcome. There was interspecific variation in nutrient uptake, probably related to each species` performance and photosynthetic pathways. Whereas B. balansae seems to use nitrogen for growth, Ae. distichantha apparently stores nitrogen for stressful nutritional conditions. Bromeliads absorbed more nitrogen coming from spider faeces than from flies, reinforcing the beneficial role played by predators in these digestive mutualisms.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

(In vitro Propagation of Heliconia bihai L. from Zygotic Embryos). The internal morphology of embryos from immature and mature fruits of Hcliconia bihai (L.) L. cv. Lobster Claw Two was examined. Embryos were inoculated into MS media (full MS and 1/2 MS) and GA(1) (0.2.5 and 5 mg L(-1)) with either sucrose or glucose. These plantlets were then replicated and transferred to MS medium (full MS or 1/2 MS) with 0 or 2.5 mg L(-1) BAP and their multiplication was evaluated 30 and 45 days after inoculation. The genetic variability of the multiplied plants was estimated using isoenzyme analyses. The internal morphology of the mature embryos revealed their tissues to be in more advanced stages of differentiation than immature embryos. In the conversion phase, 85% of the inoculated embryos developed into plants in the 1/2 MS medium with sucrose, in contrast to only 41% of the embryos that were cultivated with glucose. In the multiplication phase, plants cultivated in 1/2 MS medium with 2.5 mg L(-1) BAP demonstrated more buds. Isoenzyme analyses showed pattern changes in terms of the color intensity and the migration of some of the bands. These results may be associated with differences in the ages of the mother plants and of the plantlets obtained in vitro.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Cariria orbiculiconiformis gen. nov. et spec. nov., a gymnosperm with gnetoid characters is described from the upper Aptian Crato Formation of the Araripe Basin in northeastern Brazil. Gross-morphology and anatomical details have been studied and characters have been discussed in respect to various seed plants. Several of these characters fit best with those of Gnetales and their putative fossil allies. However, the fossil plant cannot be assigned to any known extinct or extant group of seed plants in their current circumscription. Stem gross-morphology, xylotomical characters and epidermal features indicate a gnetophytic relationship, whereas characters of the reproductive organs are rather distinct from those found in extant taxa. The reproductive unit of the new taxon represents a triple organ consisting of two dichasial ovulate structures and one median pollen-producing structure containing smooth, monosulcate, boat-shaped pollen in-situ. Each ovulate structure consists of two distinct pairs of bracts, a sterile one at the base and a fertile one forming a terminal orbicular capsule. Stiff processes found in the apex of the ovulate structure may represent micropylar tubes of seeds, as seen in the Bennettitales-Erdtmanithecales-Gnetales group. C orbiculiconiformis gen. nov. et spec. nov. was ans herbaceous or semi-shrub-like plant that may have been adapted to the r-strategy in a stressful environment. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Transplantation of pancreatic islets isolated from organ donors constitutes a promising alternative treatment for type 1 diabetes, however, it is severely limited by the shortage of organ donors. Ex vivo islet cell cultures appear as an attractive but still elusive approach for curing type 1 diabetes. It has recently been shown that, even in the absence of fibrotic over-growth, several factors, such as insufficient nutrition of the islet core, represent a major barrier for long-term survival of islets grafts. The use of immobilized dispersed cells may contribute to solve this problem due to conceivably easier nutritional and oxygen support to the cells. Therefore, we set out to establish an immobilization method for primary cultures of human pancreatic cells by adsorption onto microcarriers (MCs). Dispersed human islets cells were seeded onto Cytodex1 microcarriers and cultured in bioreactors for up to eight days. The cell number increased and islet cells maintained their insulin secretion levels throughout the time period studied. Moreover, the cells also presented a tendency to cluster upon five days culturing. Therefore, this procedure represents a useful tool for controlled studies on islet cells physiology and, also, for biotechnological applications.