2 resultados para Plantation owners

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Eddy-covariance measurements of net ecosystem exchange of CO(2) (NEE) and estimates of gross ecosystem productivity (GEP) and ecosystem respiration (R(E)) were obtained in a 2-4 year old Eucalyptus plantation during two years with very different winter rainfall In the first (drier) year the annual NEE GEP and RE were lower than the sums in the second (normal) year and conversely the total respiratory costs of assimilated carbon were higher in the dry year than in the normal year Although the net primary production (NPP) in the first year was 23% lower than that of the second year the decrease in the carbon use efficiency (CUE = NPP/GEP) was 11% and autotrophic respiration utilized more resources in the first dry year than in the second normal year The time variations in NEE were followed by NPP because in these young Eucalyptus plantations NEE is very largely dominated by NPP and heterotrophic respiration plays only a relatively minor role During the dry season a pronounced hysteresis was observed in the relationship between NEE and photosynthetically active radiation and NEE fluxes were inversely proportional to humidity saturation deficit values greater than 0 8 kPa Nighttime fluxes of CO(2) during calm conditions when the friction velocity (u) was below the threshold (0 25 ms(-1)) were estimated based on a Q(10) temperature-dependence relationship adjusted separately for different classes of soil moisture content which regulated the temperature sensitivity of ecosystem respiration (C) 2010 Elsevier B V All rights reserved

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The eddy covariance method was used to measure energy and water balance of a plantation of Eucalyptus (grandis x urophylla) hybrids over a 2 year period. The average daily evaporation rates were 5.4 (+/- 2.0) mm day(-1) in summer, but fell to 1.2 (+/- 0.3) mm day(-1) in winter. In contrast, the sensible heat flux was relatively low in summer but dominated the energy balance in winter. Evaporation accounted for 80% and 26% of the available energy, in summer and winter respectively. The annual evaporation was 82% (1124 mm) and 96% (1235 mm) of the annual rainfall recorded during the first and second year, respectively. Daily average canopy and aerodynamic conductance to water vapour were in the summer 51.9 (+/- 38.4) mm s(-1) 84.1 (+/- 25.6) mm s(-1), respectively; and in the winter 6.0 (+/- 10.5) mm s(-1) and 111.6 (+/- 24.6) mm s(-1), respectively. (C) 2010 Elsevier B.V. All rights reserved.