16 resultados para Plant developmental stages
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
The effects of UVB radiation on the different developmental stages of the carrageenan-producing red alga Iridaea cordata were evaluated considering: (1) carpospore and discoid germling mortality; (2) growth rates and morphology of young tetrasporophytes; and (3) growth rates and pigment content of field-collected plant fragments. Unialgal cultures were submitted to 0.17, 0.5, or 0.83 W m(-2) of UVB radiation for 3 h per day. The general culture conditions were as follows: 12 h light/12 h dark cycles; irradiance of 55 mu mol photon. per square meter per second; temperature of 9 +/- 1 degrees C; and seawater enriched with Provasoli solution. All UVB irradiation treatments were harmful to carpospores (0.17 W m(-2) = 40.9 +/- 6.9%, 0.5 W m(-2) = 59.8 +/- 13.4%, 0.83 W m(-2) = 49 +/- 17.4% mortality in 3 days). Even though the mortality of all discoid germlings exposed to UVB radiation was unchanged when compared to the control, those germlings exposed to 0.5 and 0.83 W m(-2) treatments became paler and had smaller diameters than those cultivated under control treatment. Decreases in growth rates were observed in young tetrasporophytes, mainly in 0.5 and 0.83 W m(-2) treatments. Similar effects were only observed in fragments of adult plants cultivated at 0.83 W m(-2). Additionally, UVB radiation caused morphological changes in fragments of adult plants in the first week, while the young individuals only displayed this pattern during the third week. The verified morphological alterations in I. cordata could be interpreted as a defense against UVB by reducing the area exposed to radiation. However, a high level of radiation appears to produce irreparable damage, especially under long-term exposure. Our results suggest that the sensitivity to ultraviolet radiation decreases with increased algal age and that the various developmental stages have different responses when exposed to the same doses of UVB radiation.
Resumo:
Acca sellowiana (Berg.) Burr. is a native Myrtaceae from southern Brazil and Uruguay, now the subject of a domestication and breeding program. Biotechnological tools have been used to assist in this program. The establishment of a reliable protocol of somatic embryogenesis has been pursued, with a view to capturing and fixing genetic gains. The rationale behind this work relies on the fact that deepening comprehension of the general metabolism of zygotic embryogenesis may certainly improve the protocol for somatic embryogenesis. Thus, in the present work we studied the accumulation of protein, total sugars, starch, amino acids, polyamines (PAs), IAA and ABA, in different stages of A. sellowiana zygotic embryogenesis. Starch is the predominant storage compound during zygotic embryo development. Increased synthesis of amino acids in the cotyledonary stage, mainly of asparagine, was observed throughout development. Total free PAs showed increased synthesis, whereas total conjugated PAs were mainly observed in the early developmental stages. IAA decreased and ABA increased with the progression from early to late embryogenesis. Besides providing basic information on the morphophysiological and biochemical changes of zygotic embryogenesis, the results here obtained may provide adequate strategies towards the modulation of somatic embryogenesis in this species as well as in other woody angiosperms.
Resumo:
The objective of the present work was to induce somatic embryogenesis from zygotic embryos of Passiflora cincinnata Masters. Zygotic embryos formed calli on media with different concentrations of 2,4-dichlorophenoxyacetic acid (2,4-D) and 4.5 mu M benzyladenine (BA) after 30 days of in vitro culture. A concentration of 18.1 mu M 2,4-D resulted in the largest number of somatic embryos. Embryogenic calli were yellowish and friable, forming whitish proembryogenic masses. Morphologically, embryogenic cells were small and had large nuclei and dense cytoplasm, whereas non-embryogenic cells were elongated, with small nuclei and less dense cytoplasm. Calli cultured under white light on basal Murashige and Skoog`s medium with activated charcoal produced embryos in all developmental stages. There were differences among the treatments, with some leading to the production of calli with embryos and some only to callus formation. Some abnormalities were associated with somatic embryos, including fused axes, fused cotyledons and polycotyledonary embryos. Production of secondary somatic embryos occurred in the first cycle of primary embryo development. Secondary embryos differentiated from the surface of the protodermal layer of primary embryos with intense cell proliferation, successive mitotic divisions in the initial phase of embryoid development, and a vascular system formed with no connection to the parental tissue. This secondary embryogenic system of P. cincinnata is characterized by intense proliferation and maintenance of embryogenic competence after successive subcultures. This reproducible protocol opens new prospects for massive propagation and is an alternative to the current organogenesis-based transformation protocol.
Resumo:
(Stigmatic surface, reproductive biology and taxonomy of the Vochysiaceae). The Vochysiaceae are Neotropical trees and shrubs, common in the savanna areas in Central Brazil (Cerrados). The family has been traditionally divided into two tribes: Erismeae, with three genera, and Vochysieae, with five genera. We investigated the stigmatic surface of six Vochysiaceae species, belonging to four genera of Vochysieae: Vochysia, Salvertia, Callisthene and Qualea. Flowers and buds at different developmental stages were collected. Morphological features were observed on fresh material and stigmatic receptivity was inferred based on esterasic activity. Pistils were fixed and embedded in paraplast and sectioned on a rotary microtome; the sections were stained before histological analysis. Stigmas of open flowers were also observed by scanning electron microscopy. Stigmas of all species were wet and showed esterasic activity at pre-anthesis and anthesis stages. Stigmatic surface was continuous with transmitting tissue of glandular nature. Vochysia and Salvertia stigmatic surfaces were formed by multicelular uniseriate hairs, and species of the remaining genera showed papillate surface. The exudate over mature stigmas in all species flowed without rupture of stigmatic Surface and pollen tubes grew down between hairs or papillae. Differences on the stigmatic surface agreed with a phylogenetic reconstruction that separated two clades and indicated that Vochysieae is not monophyletic. Stigmatic features could not be associated with pollination and breeding systems.
Resumo:
Comparative analysis of zygotic and somatic embryogenesis of Acca sellowiana showed higher amounts of sucrose, fructose, raffinose, and myo-inositol in zygotic embryos at different developmental stages than in corresponding somatic ones. These differences were mostly constant. In general, glucose levels were significantly lower than the other soluble carbohydrates analyzed, showing minor variation in each embryo stage. Despite the presence of sucrose in the culture medium, its levels conspicuously diminished in somatic embryos compared with the zygotic ones. Raffinose enhanced parallel to embryo development, regardless of its zygotic or somatic origin. Analysis of the soluble carbohydrate composition of mature zygotic cotyledon used as explant pointed out fructose, glucose, myo-inositol, sucrose, and raffinose as the most important. Similar composition was also found in the corresponding somatic cotyledon. Total soluble carbohydrates varied inversely, decreasing in zygotic embryos and increasing in somatic embryos until the 24th d, at which time they increased rapidly about sixfold in zygotic embryos until the 27th d, a period coinciding with the zygotic proembryos formation. Such condition seems to reflect directly the variation of endogenous sucrose level, mainly because glucose and fructose diminished continuously during this time period. This means that, in terms of soluble sugars, zygotic embryo formation occurred under a situation represented by high sucrose amounts, simultaneously with low fructose and glucose levels, while in contrast, somatic embryo formation took place under an endogenous sugar status characterized by a substantial fructose enhancement. Starch levels increased continuously in zygotic embryos and decreased in somatic ones, the reverse to what was found in fructose variation. Starch accumulation was significantly higher in somatic torpedo and cotyledonary embryos than in the corresponding zygotic ones.
Resumo:
Trypanosoma cruzi, the agent of Chagas` disease, alternates between different morphogenetic stages that face distinct physiological conditions in their invertebrate and vertebrate hosts, likely in the availability of glucose. While the glucose transport is well characterized in epimastigotes of T cruzi, nothing is known about how the mammalian stages acquire this molecule. Herein glucose transport activity and expression were analyzed in the three developmental stages present in the vertebrate cycle of T cruzi. The infective trypomastigotes showed the highest transport activity (V(max) = 5.34 +/- 0.54 nmol/min per mg of protein: K(m) = 0.38 +/- 0.01 mM) when compared to intracellular epimastigotes (V(max) = 2.18 +/- 0.20 nmol/min per mg of protein; K(m) = 0.39 +/- 0.01 mM). Under the conditions employed no transport activity could be detected in amastigotes. The gene of the glucose transporter is expressed at the mRNA level in trypomastigotes and in intracellular epimastigotes but not in amastigotes, as revealed by real-time PCR. In both trypomastigotes and intracellular epimastigotes protein expression could be detected by Western blot with an antibody raised against the glucose transporter correlating well with the transport activity measured experimentally. Interestingly, anti-glucose transporter antibodies showed a strong reactivity with glycosome and reservosome organelles. A comparison between proline and glucose transport among the intracellular differentiation forms is presented. The data suggest that the regulation of glucose transporter reflects different energy and carbon requirements along the intracellular life cycle of T cruzi. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Methods used for lipid analysis in embryos and oocytes usually involve selective lipid extraction from a pool of many samples followed by chemical manipulation, separation and characterization of individual components by chromatographic techniques. Herein we report direct analysis by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) of single and intact embryos or oocytes from various species. Biological samples were simply moisturized with the matrix solution and characteristic lipid ( represented by phosphatidylcholines, sphingomyelins and triacylglycerols) profiles were obtained via MALDI-MS. As representative examples, human, bovine, sheep and fish oocytes, as well as bovine and insect embryos were analyzed. MALDI-MS is shown to be capable of providing characteristic lipid profiles of gametes and embryos and also to respond to modifications due to developmental stages and in vitro culture conditions of bovine embryos. Investigation in developmental biology of the biological roles of structural and reserve lipids in embryos and oocytes should therefore benefit from these rapid MALDI-MS profiles from single and intact species.-Ferreira, C. R., S. A. Saraiva, R. R. Catharino, J. S. Garcia, F. C. Gozzo, G. B. Sanvido, L. F. A. Santos, E. G. Lo Turco, J. H. F. Pontes, A. C. Basso, R. P. Bertolla, R. Sartori, M. M. Guardieiro, F. Perecin, F. V. Meirelles, J. R. Sangalli, and M. N. Eberlin. Single embryo and oocyte lipid fingerprinting by mass spectrometry. J. Lipid Res. 2010. 51: 1218-1227.
Resumo:
The present study is part of an ongoing investigation into the characteristics of Myxozoan parasites of Brazilian freshwater fish and was carried out using morphology, histopathology and electron microscopy analysis. A new Myxosporea species (Henneguya pseudoplatystoma) is described causing an important reduction in gill function in the farmed pintado (a hybrid fish from a cross between Pseudoplatystoma corruscans and Pseudoplatystoma fasciatum), which is a commercially important South American catfish. From a total of 98 pintado juveniles from fish farms in the states of Sao Paulo and Mato Grosso do Sul (Brazil), 36 samples (36.7%) exhibited infection of the gill filaments. infection was intense, with several plasmodia occurring on a same gill filament. The plasmodia were white and measured up to 0.5 mm in length; mature spores were ellipsoidal in the frontal view, measuring 33.2 +/- 1.9 mu m in total length, 10.4 +/- 0.6 mu m in body length, 3.4 +/- 0.4 mu m in width and 22.7 +/- 1.7 mu m in the caudal process. The polar capsules were elongated, measuring 3.3 +/- 0.4 mu m in length and 1.0 +/- 0.1 mu m in width and the polar filaments had six to seven turns. Histopathological analysis revealed the parasite in the connective tissue of the gill filaments and lamella. No inflammatory process was observed, but the development of the plasmodia reduced the area of functional epithelium. Ultrastructural analyses revealed a single plasmodial wall, which was in direct contact with the host cells and had numerous projections in direction of the host cells as well as extensive pinocytotic canals. A thick layer (2-6 mu m) of fibrous material and numerous mitochondria were found in the ectoplasm. Generative cells and the earliest stage of sporogenesis were seen more internally. Advanced spore developmental stages and mature spores were found in the central portion of the plasmodia. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
In this report, we describe the morphology and histopathology of Myxobolus salminus n. sp., a parasite of the gill filaments of wild Salminus brasiliensis (dourado) from the Brazilian Pantanal. The small polysporic plasmodia were similar to 100 mu m in diameter and the development was asynchronous. The mature spores were oval to pear shaped and had a smooth wall. The spore measurements were (mean +/- S.D., with range in parentheses): length 10.1 +/- 0.4 mu m (9.6-10.5), width 6.1 +/- 0.4 mu m (5.8-6.6) and thickness 5.0 +/- 0.6 mu m (4.7-5.3). The polar capsules were elongated and of equal size: length 4.6 +/- 0.2 mu m (4.3-4.8) and width 1.7 +/- 0.1 mu m (1.5-1.9). The histological analysis revealed numerous plasmodia in the blood vessels of the gill filaments. The site of parasite development was the wall of the large-caliber blood vessel of the gill filament, with progressive growth towards the lumen, resulting in the obstruction of blood flow, congestion and perivascular edema. The ultrastructural study revealed that the plasmodial wall was composed of two membranes, had numerous pinocytic canals and was in direct contact with the basement membrane of the vessel. The development of the parasite was asynchronous, with mature spores, immature spores and young developmental stages randomly distributed throughout the plasmodium. The prevalence of the parasite was 4.4%. with male and female fish being infected. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Objective: To develop yardsticks for assessment of dental arch relationship in young individuals with repaired complete bilateral cleft lip and palate appropriate to different stages of dental development. Participants: Eleven cleft team orthodontists from five countries worked on the projects for 4 days. A total of 776 sets of standardized plaster models from 411 patients with operated complete bilateral cleft lip and palate were available for the exercise. Statistics: The interexaminer reliability was calculated using weighted kappa statistics. Results: The interrater weighted kappa scores were between .74 and .92, which is in the ""good"" to ""very good"" categories. Conclusions: Three bilateral cleft lip and palate yardsticks for different developmental stages of the dentition were made: one for the deciduous dentition (6-year-olds` yardstick), one for early mixed dentition (9-year-olds` yardstick), and one for early permanent dentition (12-year-olds` yardstick).
Resumo:
Seeds of Bixa orellana (L.) have a sclerified palisade cell layer, which constitutes a natural barrier to water uptake. In fact, newly fully developed B. orellana seeds are highly impermeable to water and thereby dormant. The purpose of this work is to investigate, from a developmental point of view, the histochemical and physical changes in the cell walls of the seed coat that are associated with the water impermeability. Seed coat samples were analyzed by histochemical and polarization microscopy techniques, as well as by fractionation/HPAEC-PAD. For histochemical analysis the tissue samples were fixed, dehydrated, embedded in paraffin and the slides were dewaxed and tested with appropriate stains for different cell wall components. Throughout the development of B. orellana seeds, there was a gradual thickening of the seed coat at the palisade region. This thickening was due to the deposition of cellulose and hemicelluloses in the palisade layer cell walls, which resulted in a highly water impermeable seed coat. The carbohydrate composition of the cell walls changed dramatically at the late developmental stages due to the intense deposition of hemicelluloses. Hemicelluloses were mainly deposited in the outer region of the palisade layer cell walls and altered the birefringent pattern of the walls. Xylans were by far the most abundant hemicellulosic component of the cell walls. Deposition of cellulose and hemicelluloses, especially xylans, could be responsible for the impermeability to water observed in fully developed B. orellana seeds.
Resumo:
Preclinical investigations can start with preliminary in vitro studies before using animal models. Following this approach, the number of animals used in preclinical acute toxicity testing can be reduced. In this study, we employed an in-house validated in vitro cytotoxicity test based on the Spielmann approach for toxicity evaluation of the lignan grandisin, a candidate anticancer agent, and its major metabolite. the 4-O-demethylgrandisin, by neutral red uptake (NRU) assay, on mouse fibroblasts Balb/c 3T3 cell line. Using different concentrations of grandisin and its major metabolite (2.31; 1.16; 0.58; 0.29; 0.14; 0.07; 0.04; 0.002 mu M) in Balb/c 3T3-A31 NRU cytotoxicity assay, after incubation for 48 h, we obtained IC(50) values for grandisin and its metabolite of 0.078 and 0.043 mu M, respectively. The computed LD(50) of grandisin and 4-O-demethylgrandisin were 617.72 and 429.95 mg/kg, respectively. Both were classified under the Globally Harmonized System as category 4. Since pharmacological and toxicological data are crucial in the developmental stages of drug discovery, using an in vitro assay we demonstrated that grandisin and its metabolite exhibit distinct toxicity profiles. Furthermore, results presented in this work can contribute to reduce the number of animals required in subsequent pharmacological/toxicological studies. (C) 2010 Elsevier GmbH. All rights reserved.
Resumo:
Since the advent of the postgenomic era, efforts have focused on the development of rapid strategies for annotating plant genes of unknown function. Given its simplicity and rapidity, virus-induced gene silencing (VIGS) has become one of the preeminent approaches for functional analyses. However, several problems remain intrinsic to the use of such a strategy in the study of both metabolic and developmental processes. The most prominent of these is the commonly observed phenomenon of ""sectoring"" the tissue regions that are not effectively targeted by VIGS. To better discriminate these sectors, an effective marker system displaying minimal secondary effects is a prerequisite. Utilizing a VIGS system based on the tobacco rattle virus vector, we here studied the effect of silencing the endogenous phytoene desaturase gene (pds) and the expression and subsequent silencing of the exogenous green fluorescence protein (gfp) on the metabolism of Arabidopsis (Arabidopsis thaliana) leaves and tomato (Solanum lycopersicum) fruits. In leaves, we observed dramatic effects on primary carbon and pigment metabolism associated with the photobleached phenotype following the silencing of the endogenous pds gene. However, relatively few pleiotropic effects on carbon metabolism were observed in tomato fruits when pds expression was inhibited. VIGS coupled to gfp constitutive expression revealed no significant metabolic alterations after triggering of silencing in Arabidopsis leaves and a mild effect in mature green tomato fruits. By contrast, a wider impact on metabolism was observed in ripe fruits. Silencing experiments with an endogenous target gene of interest clearly demonstrated the feasibility of cosilencing in this system; however, carefully constructed control experiments are a prerequisite to prevent erroneous interpretation.
Resumo:
Oocyte developmental competence depends on maternal stores that support development throughout a transcriptionally silent period during early embryogenesis. Previous attempts to investigate transcripts associated with oocyte competence have relied on prospective models, which are mostly based on morphological. criteria. Using a retrospective model, we quantitatively compared mRNA among oocytes with different embryo development competence. A cytoplasm biopsy was removed from in vitro matured oocytes to perform comparative analysis of amounts of global polyadenylated (polyA) mRNA and housekeeping gene transcripts. After parthenogenetic activation of biopsied oocytes, presumptive zygotes were cultured individually in vitro and oocytes were classified according to embryo development: (i) blocked before the 8-cell stage; (ii) blocked between the 8-cell and morulae stages; or (iii) developed to the blastocyst stage. Sham-manipulated controls confirmed that biopsies did not alter development outcome. Total polyA mRNA amounts correlate with oocyte diameter but not with the ability to develop to the 8-cell and blastocyst stages. The last was also confirmed by relative quantification of GAPDH, H2A and Hprt1 transcripts. In conclusion, we describe a novel retrospective model to identify putative markers of development competence in single oocytes and demonstrate that global mRNA amounts at the metaphase II stage do not correlate with embryo development in vitro.
Resumo:
Oocyte maturation is a long process during which oocytes acquire their intrinsic ability to support the subsequent stages of development in a stepwise manner, ultimately reaching activation of the embryonic genome. This process involves complex and distinct, although linked, events of nuclear and cytoplasmic maturation. Nuclear maturation mainly involves chromosomal segregation, whereas cytoplasmic maturation involves organelle reorganization and storage of mRNAs, proteins and transcription factors that act in the overall maturation process, fertilization and early embryogenesis. Thus, for didactic purposes, we subdivided cytoplasmic maturation into: (1) organelle redistribution, (2) cytoskeleton dynamics, and (3) molecular maturation. Ultrastructural analysis has shown that mitochondria, ribosomes, endoplasmic reticulum, cortical granules and the Golgi complex assume different positions during the transition from the germinal vesicle stage to metaphase II. The cytoskeletal microfilaments and microtubules present in the cytoplasm promote these movements and act on chromosome segregation. Molecular maturation consists of transcription, storage and processing of maternal mRNA, which is stored in a stable, inactive form until translational recruitment. Polyadenylation is the main mechanism that initiates protein translation and consists of the addition of adenosine residues to the 3` terminal portion of mRNA. Cell cycle regulators, proteins, cytoplasmic maturation markers and components of the enzymatic antioxidant system are mainly transcribed during this stage. Thus, the objective of this review is to focus on the cytoplasmic maturation process by analyzing the modifications in this compartment during the acquisition of meiotic competence for development. (c) 2009 Elsevier Inc. All rights reserved.