13 resultados para Photon correlation spectroscopy
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
This work summarizes results obtained on membranes composed of the ternary mixture dioleoylphosphatidylglycerol (DOPG), egg sphingomyelin (eSM) and cholesterol (Chol). The membrane phase state as a function of composition is characterized from data collected with fluorescence microscopy on giant unilamellar vesicles. The results suggest that the presence of the charged DOPG significantly decreases the composition region of coexistence of liquid ordered and liquid disordered phases as compared to that in the ternary mixture of dioleoylphosphatidycholine, sphingomyelin and cholesterol. The addition of calcium chloride to DOPG:eSM:Chol vesicles, and to a lesser extent the addition of sodium chloride, leads to the stabilization of the two-phase coexistence region, which is expressed in an increase in the miscibility temperature. On the other hand, addition of the chelating agent EDTA has the opposite effect, suggesting that impurities of divalent cations in preparations of giant vesicles contribute to the stabilization of charged domains. We also explore the behavior of these membranes in the presence of extruded unilamellar vesicles made of the positively charged lipid dioleoyltrimethylammoniumpropane (DOTAP). The latter can induce domain formation in DOPG:eSM:Chol vesicles with initial composition in the one-phase region. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
This work presents a FT-Raman study (lambda(0) = 1064 nm) of naturally occurring polyester poly[(R)-3-hydroxybutyrate] (PHB) and its copolymer poly[(R)-3-hydroxybutyrate-co-(R)-3-hydroxyvalerate] (PHBV) with 5,8 and 12 mol % of HV (hydroxyvalerate). The FT-Raman spectra of films indicate that full width at half height of the band centered at 1725 cm(-1) and relative intensity of bands at 1443 and 1458 cm(-1) can be use to estimate the crystalline degree in film samples. The similarity between Raman spectra of molten PHB and PHBV and theirs CDCl(3) solutions suggested that molten polymers present similar conformation than polymers in solution. Raman data of these samples showed that bands at 1220, 1402, 1725, 2998 and 3009 cm(-1) are due to crystalline helical structure and the bands at 1453, 1740, 2881, 2938 and 2990 cm(-1) are originated from disordered domains. It is shown that composition of PHBV samples can be estimated by analyzing the ratio of the intensity of the bands at 2938 cm(-1) (nu C-H) and 1740 cm(-1) (nu C=O) in the spectra of solutions and of bands at 1354 (wCH(2)) and 1740 cm(-1) (nu C=O) in spectra of molten polymers. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Small-angle X-ray scattering (SAXS) and electron paramagnetic resonance (EPR) have been carried out to investigate the structure of the self-aggregates of two phenothiazine drugs, chlorpromazine (CPZ) and trifluoperazine (TFP), in aqueous solution. In the SAXS studies, drug solutions of 20 and 60 mM, at pH 4.0 and 7.0, were investigated and the best data fittings were achieved assuming several different particle form factors with a homogeneous electron density distribution in respect to the water environment. Because of the limitation of scattering intensity in the q range above 0.15 angstrom(-1), precise determination of the aggregate shape was not possible and all of the tested models for ellipsoids, cylinders, or parallelepipeds fitted the experimental data equally well. The SAXS data allows inferring, however, that CPZ molecules might self-assemble in a basis set of an orthorhombic cell, remaining as nanocrystallites in solution. Such nanocrystals are composed of a small number of unit cells (up to 10, in c-direction), with CPZ aggregation numbers of 60-80. EPR spectra of 5- and 16-doxyl stearic acids bound to the aggregates were analyzed through simulation, and the dynamic and magnetic parameters were obtained. The phenothiazine concentration in EPR experiments was in the range of 5-60 mM. Critical aggregation concentration of TFP is lower than that for CPZ, consistent with a higher hydrophobicity of TFP. At acidic pH 4.0 a significant residual motion of the nitroxide relative to the aggregate is observed, and the EPR spectra and corresponding parameters are similar to those reported for aqueous surfactant micelles. However, at pH 6.5 a significant motional restriction is observed, and the nitroxide rotational correlation times correlate very well with those estimated for the whole aggregated particle from SAXS data. This implies that the aggregate is densely packed at this pH and that the nitroxide is tightly bound to it producing a strongly immobilized EPR spectrum. Besides that, at pH 6.5 the differences in motional restriction observed between 5- and 16-DSA are small, which is different from that observed for aqueous surfactant micelles.
Resumo:
The quadrupolar hyperfine interactions of in-diffused (111)In -> (111)Cd probes in polycrystalline isostructural Zr(4)Al(3) and Hf(4)Al(3) samples containing small admixtures of the phases (Zr/Hf)(3)Al(2) were investigated. A strong preference of (111)In solutes for the contaminant (Zr/Hf)(3)Al(2) minority phases was observed. Detailed calculations of the electric field gradient (EFG) at the Cd nucleus using the full-potential augmented plane wave + local orbital formalism allowed us to assign the observed EFG fractions to the various lattice sites in the (Zr/Hf)(3)Al(2) compounds and to understand the preferential site occupation of the minority phases by the (111)In atoms. The effects of the size of the supercell and relaxation around the oversized In and Cd probe atoms were investigated in detail.
Resumo:
The magnetic linear dichroism (MLD) at band-edge photon energies in the Voigt geometry was calculated for EuTe. At the spin-flop transition, MLD shows a step-like increase. Above the spin-flop transition MLD slowly decreases and becomes zero when the averaged electronic charge becomes symmetric relative to the axis of light propagation. Further increase of the magnetic field causes ferromagnetic alignment of the spins along the magnetic field direction, and MLD is recovered but with an opposite sign, and reaches maximum absolute values. These results are explained by the rearrangement of the Eu(2+) spin distribution in the crystal lattice as a function of magnetic field, due to the Zeeman interaction, demonstrating that MLD can be a sensitive probe of the spin order in EuTe, and provides information that is not accessible from other magneto-optical techniques, such as magnetic circular dichroism measurement studies.
Resumo:
This work reports on the excited-state absorption spectrum of oxidized Cytochrome c (Fe(3+)) dissolved in water, measured with the Z-scan technique with femtosecond laser pulses. The excited-state absorption cross-sections between 460 and 560 nm were determined with the aid of a three-energy-level model. Reverse saturable absorption was observed below 520 nm, while a saturable absorption process occurs in the Q-band, located around 530 nm. Above 560 nm, a competition between saturable absorption and two-photon absorption was inferred. These results show that Cytochrome c presents distinct nonlinear behaviors, which may be useful to study electron transfer chemistry in proteins by one- and two-photon absorption. In addition, owing to these nonlinear optical features, this molecule may be employed in applications involving photodynamics therapy and saturable absorbers. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Two-photon polymerization is a powerful tool for fabricating three-dimensional micro/nano structures for applications ranging from nanophotonics to biology. To tailor such structure for specific purposes it is often important to dope them. In this paper we report on the fabrication of structures, with nanometric surface features (resolution of approximately 700 nm), using two-photon polymerization of an acrylic resin doped with the biocompatible polymer chitosan using a guest-host scheme. The fluorescence background in the Raman spectrum indicates the presence of chitosan throughout the structure. Mechanical characterization reveals that chitosan does not affect the mechanical properties of the host acrylic resin and, consequently, the structures exhibit excellent integrity. The approach presented in this work can be used in the fabrication of micro- and nanostructures containing biopolymers for biomedical applications.
Resumo:
We present a site-resolved study of stow (ms to s) motions in a protein in the solid (microcrystalline) state performed with the use of a modified version of the centerband-only detection of exchange (CODEX) NMR experiment. CODEX was originally based on measuring changes in molecular orientation by means of the chemical shift anisotropy (CSA) tensor, and in our modification, angular reorientations of internuclear vectors are observed. The experiment was applied to the study of stow (15)N-(1)H motions of the SH3 domain of chicken a-spectrin. The protein was perdeuterated with partial back-exchange of protons at labile sites. This allowed indirect (proton) detection of (15)N nuclei and thus a significant enhancement of sensitivity. The diluted proton system also made negligible proton-driven spin diffusion between (15)N nuclei, which interferes with the molecular exchange (motion) and hampers the acquisition of dynamic parameters. The experiment has shown that approximately half of the peaks in the 2D (15)N-(1)H correlation spectrum exhibit exchange in a different extent. The correlation time of the slow motion for most peaks is 1 to 3 s. This is the first NMR study of the internal dynamics of proteins in the solid state on the millisecond to second time scale with site-specific spectral resolution that provides both time-scale and geometry information about molecular motions.
Resumo:
We have studied the molecular dynamics of one of the major macromolecules in articular cartilage, chondroitin sulfate. Applying (13)C high-resolution magic-angle spinning NMR techniques, the NMR signals of all rigid macromolecules in cartilage can be suppressed, allowing the exclusive detection of the highly mobile chondroitin sulfate. The technique is also used to detect the chondroitin sulfate in artificial tissue-engineered cartilage. The tissue-engineered material that is based on matrix producing chondrocytes cultured in a collagen gel should provide properties as close as possible to those of the natural cartilage. Nuclear relaxation times of the chondroitin sulfate were determined for both tissues. Although T(1) relaxation times are rather similar, the T(2) relaxation in tissue-engineered cartilage is significantly shorter. This suggests that the motions of chondroitin sulfate in data:rat and artificial cartilage different. The nuclear relaxation times of chondroitin sulfate in natural and tissue-engineered cartilage were modeled using a broad distribution function for the motional correlation times. Although the description of the microscopic molecular dynamics of the chondroitin sulfate in natural and artificial cartilage required the identical broad distribution functions for the correlation times of motion, significant differences in the correlation times of motion that are extracted from the model indicate that the artificial tissue does not fully meet the standards of the natural ideal. This could also be confirmed by macroscopic biomechanical elasticity measurements. Nevertheless, these results suggest that NMR is a useful tool for the investigation of the quality of artificially engineered tissue. (C) 2010 Wiley Periodicals, Inc. Biopolymers 93: 520-532, 2010.
Resumo:
Two-photon absorption induced polymerization provides a powerful method for the fabrication of intricate three-dimensional microstructures. Recently, Lucirin TPO-L was shown to be a photoinitiator with several advantageous properties for two-photon induced polymerization. Here we measure the two-photon absorption cross-section spectrum of Lucirin TPO-L, which presents a maximum of 1.2 GM at 610 nm. Despite its small two-photon absorption cross-section, it is possible to fabricate excellent microstructures by two-photon polymerization due to the high polymerization quantum yield of Lucirin TPO-L. These results indicate that optimization of the two-photon absorption cross-section is not the only material parameter to be considered when searching for new photoinitiators for microfabrication via two-photon absorption.
Resumo:
The pH-structure correlation of the products of aniline peroxydisulfate reaction was mainly investigated by resonance Raman spectroscopy. The reactions of aniline and ammonium peroxydisulfate were carried out in aqueous solutions of initial pH ranging from 4.9 to 13.2 and monomer/oxidant molar ratio of 4/1. For an initial pH of 4.9, the spectroscopic techniques showed that the emeraldine salt form of polyaniline (PANI-ES) is the main product, corroborating that the usual head-to-tail coupling mechanism is taking place. The resonance Raman spectra at 1064 nm exciting wavelength were useful to detect the emeraldine salt as a minor product for reactions at an initial pH of 5.3-11.5. The Raman spectra of the main product of the reaction at initial pH of 13.2 excited at 1064 and 413.1 nm showed new spectral features consistent with 1,4-Michael-type adducts of aniline monomers and 1,4-benzoquinone-monoimine unit. These compounds and their products of hydrolysis/oxidation are the predominant species for the reaction media of initial pH from 5.3 to 13.2. In order to get PANI with different nanoscale morphologies, a pH value of more than 0 or 1 was used in the aniline polymerization. The spectroscopic data obtained in this work reveal that head-to-tail coupling does not occur when aniline reacts at media pH higher than about 5. It is suggested that chemical structures of the products of aniline oxidation by an unusual mechanism are the driving force for the development of assorted morphologies. Copyright (C) 2011 John Wiley & Sons, Ltd.
Resumo:
The electronic (UV-vis) and resonance Raman (RR) spectra of a series of para-substituted trans-beta-nitrostyrenes were investigated to determine the influence of the electron donating properties of the substituent (X = H, NO2, COOH, Cl, OCH3, OH, N(CH3)(2), and O-) on the extent of the charge transfer to the electron-withdrawing NO2 group directly linked to the ethylenic (C=C) unit. The Raman spectra and quantum chemical calculations show clearly the correlation of the electron donating power of the X group with the wavenumbers of the nu(s)(NO2) and nu (C=C)(sty) normal modes. In conditions of resonance with the lowest excited electronic state, one observes for X = OH and N(CH3)2 that the symmetric stretching of the NO2. nu(s)(NO2), is the most substantially enhanced mode, whereas for X = O-, the chromophore is extended over the whole molecule, with substantial enhancement of several carbon backbone modes. Copyright (c) 2008 John Wiley & Sons, Ltd.
Resumo:
EPR spectra of 5- and 16-doxyl stearic acid nitroxide probes (5-DSA and 16-DSA, respectively) bound to bovine serum albumin (BSA) revealed that in the presence of ionic surfactants, at least, two label populations coexist in equilibrium. The rotational correlation times (tau) indicated that component I displays a more restricted mobility state, associated to the spin labels bound to the protein; the less immobilized component 2 is due to label localization in the surfactant aggregates. For both probes, the increase of surfactant concentration leads to higher motional levels of component 1 followed by a simultaneous decrease of this fraction of nitroxides and its conversion into component 2. For 10 mM cethyltrimethylammonium chloride (CTAC), the nitroxides are 100% bound to the protein, whereas at 10mM N-hexadecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate (HPS) and sodium dodecyl sulfate (SDS) the fractions of bound nitroxides are reduced to 18% and 86%, respectively. No significant polarity changes were observed in the whole surfactant concentration range for component 1. Moreover, at higher surfactant concentration, component 2 exhibited a similar polarity as in the pure surfactant micelles. For 16-DSA the surfactant effect is different: at 10mM of HPS and CTAC the fractions of bound nitroxides are 76% and 49%, respectively, while at 10 mM SDS they are present exclusively in a micellar environment, consistent with 100% of component 2. Overall, both SDS and HPS are able to effectively displace the nitroxide probes from the protein binding sites. while CTAC seems to affect the nitroxide binding to a significantly smaller extent. (C) 2008 Elsevier B.V. All rights reserved.