2 resultados para Phosphate chain
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
A real-time polymerase chain reaction (PCR) test was developed on the basis of the Leishmania glucose-6-phosphate dehydrogenase locus that enables identification and quantification of parasites. Using two independent pairs of primers in SYBR-Green assays, the test identified etiologic agents of cutaneous leishmaniasis belonging to both subgenera, Leishmania (Viannia) and Leishmania (Leishmania) in the Americas. Furthermore, use of TaqMan probes enables distinction between L. (V.) braziliensis or L. (V.) peruviania from the other L. (Viannia) species. All assays were negative with DNA of related trypanosomatids, humans, and mice. The parasite burden was estimated by normalizing the number of organisms per total amount of DNA in the sample or per host glyceraldehyde-3-phosphate dehydrogenase copies. The real-time PCR assay for L. (Leishmania) subgenus showed a good linear correlation with quantification on the basis of a limiting dilution assay in experimentally infected mice. The test successfully identifies and quantifies Leishmania in human biopsy specimens and represents a new tool to study leishmaniasis.
Resumo:
Chagas` disease, a parasitic infection caused by the flagellate protozoan Trypanosoma cruzi, is a major public health problem affecting millions of individuals in Latin America. On the basis of the essential role in the life cycle of T. cruzi, the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) has been considered an attractive target for the development of novel antitrypanosomatid agents. In the present work, we describe the inhibitory effects of a small library of natural and synthetic anacardic acid derivatives against the target enzyme. The most potent inhibitors, 6-n-pentadecyl-(1) and 6-n-dodecylsalicilic acids (10e), have IC(50) values of 28 and 55 mu M, respectively. The inhibition was not reversed or prevented by the addition of Triton X-100, indicating that aggregate-based inhibition did not occur. In addition, detailed mechanistic characterization of the effects of these compounds on the T. cruzi GAPDH-catalyzed reaction showed clear noncompetitive inhibition with respect to both substrate and cofactor. (C) 2008 Elsevier Ltd. All rights reserved.