3 resultados para Phase one research
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Aim: To validate a non-nutritive sucking (NNS) scoring system for oral feeding in preterm newborns (PTNB). Methods: A cohort study was carried out in two phases. In phase one of the study, 22 mastered speech-language pathologists received the protocol and procedure for a NNS scoring system to evaluate the content and presentation of the form and to define the grading scale. In phase two, six speech-language pathologists evaluated 51 PTNBs weekly, using the defined scoring system. Setting: This study was carried out in the Nursery Annex to the Maternity at the Intensive and Neonatal Pediatrics Service, Instituto da Crianca, Hospital das Clinicas, School of Medicine, University of Sao Paulo (FMUSP) during the period from May 2004 to May 2006. Participants: A total of 28 speech-language pathologist experts and 51 PTNBs. Results: In the first phase of the study, 22 speech-language pathologists selected the criteria, utilized in the NNS evaluation with 80% agreement. In the second phase of the study, the NNS evaluation was carried out on 51 PTNB, and a scoring system of 50 points was proposed, which corresponds to the smallest number of false positive and negative results regarding oral feeding ability. Conclusion: An NNS evaluation system was validated that was able to indicate when oral feeding could safely begin in PTNBs with a high level of agreement among the speech-language pathologists who have participated.
Resumo:
Ubiquitous computing aims at providing services to users in everyday environments such as the home. One research theme in this area is that of building capture and access applications which support information to be recorded ( captured) during a live experience toward automatically producing documents for review (accessed). The recording demands instrumented environments with devices such as microphones, cameras, sensors and electronic whiteboards. Since each experience is usually related to many others ( e. g. several meetings of a project), there is a demand for mechanisms supporting the automatic linking among documents relative to different experiences. In this paper we present original results relative to the integration of our previous efforts in the Infrastructure for Capturing, Accessing, Linking, Storing and Presenting information (CALiSP). Ubiquitous computing aims at providing services to users in everyday environments such as the home. One research theme in this area is that of building capture and access applications which support information to be recorded (captured) during a live experience toward automatically producing documents for review (accessed). The recording demands instrumented environments with devices such as microphones, cameras, sensors and electronic whiteboards. Since each experience is usually related to many others (e.g. several meetings of a project), there is a demand for mechanisms supporting the automatic linking among documents relative to different experiences. In this paper we present original results relative to the integration of our previous efforts in the Infrastructure for Capturing, Accessing, Linking, Storing and Presenting information (CALiSP).
Resumo:
In this work, thermodynamic models for fitting the phase equilibrium of binary systems were applied, aiming to predict the high pressure phase equilibrium of multicomponent systems of interest in the food engineering field, comparing the results generated by the models with new experimental data and with those from the literature. Two mixing rules were used with the Peng-Robinson equation of state, one with the mixing rule of van der Waals and the other with the composition-dependent mixing rule of Mathias et al. The systems chosen are of fundamental importance in food industries, such as the binary systems CO(2)-limonene, CO(2)-citral and CO(2)-linalool, and the ternary systems CO(2)-Limonene-Citral and CO(2)-Limonene-Linalool, where high pressure phase equilibrium knowledge is important to extract and fractionate citrus fruit essential oils. For the CO(2)-limonene system, some experimental data were also measured in this work. The results showed the high capability of the model using the composition-dependent mixing rule to model the phase equilibrium behavior of these systems.