2 resultados para Petroleum reserves

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Seed reserve mobilization during germination of the Amazonian species Myciaria dubia (camu-camu), Eugenia stipitata(araca-boi), Dipteryx odorata (cumaru) and Hymenaea courbaril (jatoba) was evaluated. Seeds were placed in germination chambers at 30 degrees C with it 12 h photoperiod. Analysis of primary metabolites (carbohydrates, lipids and proteins) and fatty acid composition were carried out in quiescent seeds and at four germination stages after radicle protrusion. Germination was high in all species but there were statistically significant differences between species. Differences were also observed with regard to the duration of the germination period. The seeds showed variation in the content and composition of the analyzed compounds. indicating that the mobilization rates of these compounds may affect germination velocity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Understanding the behavior of petroleum films at the air/water interface is crucial for dealing with oil sticks and reducing the damages to the environment, which has normally been attempted with studies of Langmuir films made of fractions of petroleum. However, the properties of films from whole petroleum samples may differ considerably from those of individual fractions, Using surface pressure and surface potential measurements and Brewster angle and fluorescence microscopy, we show that petroleum forms it nonhomogeneous Langmuir film at the air-water interface. The surface pressure isotherms for petroleum Langmuir films exhibit gas (G), liquid-expanded (LE), and liquid-condensed phases, with almost no hysteresis in the compression-decompression cycles. Domains formed upon compression from the G to the LE phase were accompanied by an increase in fluorescence intensity with excitation at 400-440 nm owing to an increase in the surface density of the chromophores in the petroleum film. The surface pressure and the fluorescence microscopy data pointed to self-assembling domains into a pseudophase in thermo-dynamic equilibrium with other less emitting petroleum components. This hypothesis was supported by Brewster angle microscopy images, whereby the appearance of water domains even at high surface pressures confirms the tendency of petroleum to stabilize emulsion systems. The results presented here suggest that, for understanding the interaction with water, it may be more appropriate to use the whole petroleum samples rather than its fractions.