7 resultados para Perineural invasion
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
The high dependence of herbivorous insects on their host plants implies that plant invaders can affect these insects directly, by not providing a suitable habitat, or indirectly, by altering host plant availability. In this study, we sampled Asteraceae flower heads in cerrado remnants with varying levels of exotic grass invasion to evaluate whether invasive grasses have a direct effect on herbivore richness independent of the current disturbance level and host plant richness. By classifying herbivores according to the degree of host plant specialization, we also investigated whether invasive grasses reduce the uniqueness of the herbivorous assemblages. Herbivorous insect richness showed a unimodal relationship with invasive grass cover that was significantly explained only by way of the variation in host plant richness. The same result was found for polyphagous and oligophagous insects, but monophages showed a significant negative response to the intensity of the grass invasion that was independent of host plant richness. Our findings lend support to the hypothesis that the aggregate effect of invasive plants on herbivores tends to mirror the effects of invasive plants on host plants. In addition, exotic plants affect specialist insects differently from generalist insects; thus exotic plants affect not only the size but also the structural profile of herbivorous insect assemblages.
Resumo:
Plasmodium falciparum, the most important etiological agent of human malaria, is endowed with a highly complex cell cycle that is essential for its successful replication within the host. A number of evidence suggest that changes in parasite Ca(2+) levels occur during the intracellular cycle of the parasites and play a role in modulating its functions within the RBC. However, the molecular identification of Plasmodium receptors linked with calcium signalling and the causal relationship between Ca(2+) increases and parasite functions are still largely mysterious. We here describe that increases in P. falciparum Ca(2+) levels, induced by extracellular ATP, modulate parasite invasion. In particular, we show that addition of ATP leads to an increase of cytosolic Ca(2+) in trophozoites and segmented schizonts. Addition of the compounds KN62 and Ip5I on parasites blocked the ATP-induced rise in [Ca(2+)](c). Besides, the compounds or hydrolysis of ATP with apyrase added in culture drastically reduce RBC infection by parasites, suggesting strongly a role of extracellular ATP during RBC invasion. The use of purinoceptor antagonists Ip5I and KN62 in this study suggests the presence of putative purinoceptor in P. falciparum. In conclusion, we have demonstrated that increases in [Ca(2+)](c) in the malarial parasite P. falciparum by ATP leads to the modulation of its invasion of red blood cells.
Resumo:
Squamous cell carcinoma is a prevalent head and neck tumor with high mortality. We studied the role played by laminin alpha 1 chain peptide AG73 on migration, invasion, and protease activity of cells (OSCC) from human oral squamous cell carcinoma. Immunohistochemistry and immunofluorescence analyzed expression of laminin alpha 1 chain and MMP9 in oral squamous cells carcinoma in vivo and in vitro. Migratory activity of AG73-treated OSCC cells was investigated by monolayer wound assays and in chemotaxis chambers. AG73-induced invasion was assessed in Boyden chambers. Invasion depends on MMPs. Conditioned media from cells grown on AG73 was subjected to zymography. We searched for AG73 receptors related to these activities in OSCC cells. Immunofluorescence analyzed AG73induced colocalization of syndecan-1 and beta 1 integrin. Cells had these receptors silenced by siRNA, followed by treatment with AG73 and analysis of migration, invasion, and protease activity. Oral squamous cell carcinoma expresses laminin alpha 1 chain and MMP9. OSCC cells treated with AG73 showed increased migration, invasion, and protease activity. AG73 induced colocalization of syndecan-1 and beta 1 integrin. Knockdown of these receptors decreased AG73-dependent migration, invasion, and protease activity. Syndecan-1 and beta 1 integrin signaling downstream of AG73 regulate migration, invasion, and MMP production by OSCC cells.
Resumo:
Members of the genera Bacteroides and Parabacteroides are important constituents of both human and animal intestinal microbiota, and are significant facultative pathogens. In this study, the ability of Bacteroides spp. and Parabacteroides distasonis isolated from both diarrhoeal and normal stools (n = 114) to adhere to and invade HEp-2 cells was evaluated. The presence of putative virulence factors such as capsule and fimbriae was also investigated. Adherence to HEp-2 cells was observed in 75.4% of the strains, which displayed non-localized clusters. Invasion was observed in 37.5% and 26% of the strains isolated from diarrhoeal and non-diarrhoeal stools, respectively. All strains displayed a capsule, whereas none of them showed fimbriae-like structures. This is the first report of the ability of Bacteroides spp. and P. distasonis to adhere to and invade cultured HEp-2 epithelial cells.
Resumo:
The process of host cell invasion by Trypanosoma cruzi depends on parasite energy. What source of energy is used for that event is not known. To address this and other questions related to T. cruzi energy requirements and cell invasion, we analyzed metacyclic trypomastigote forms of the phylogenetically distant CL and G strains. For both strains, the nutritional stress experienced by cells starved for 24, 36, or 48 h in phosphate-buffered saline reduced the ATP content and the ability of the parasite to invade HeLa cells proportionally to the starvation time. Inhibition of ATP production by treating parasites with rotenone plus antimycin A also diminished the infectivity. Nutrient depletion did not alter the expression of gp82, the surface molecule that mediates CL strain internalization, but increased the expression of gp90, the negative regulator of cell invasion, in the G strain. When L-proline was given to metacyclic forms starved for 36 h, the ATP levels were restored to those of nonstarved controls for both strains. Glucose had no such effect, although this carbohydrate and L-proline were transported in similar fashions. Recovery of infectivity promoted by L-proline treatment of starved parasites was restricted to the CL strain. The profile of restoration of ATP content and gp82-mediated invasion capacity by L-proline treatment of starved Y-strain parasites was similar to that of the CL strain, whereas the Dm28 and Dm30 strains, whose infectivity is downregulated by gp90, behaved like the G strain. L-Proline was also found to increase the ability of the CL strain to traverse a gastric mucin layer, a property important for the establishment of T. cruzi infection by the oral route. Efficient translocation of parasites through gastric mucin toward the target epithelial cells in the stomach mucosa is an essential requirement for subsequent cell invasion. By relying on these closely associated ATP-driven processes, the metacyclic trypomastigotes effectively accomplish their internalization.
Resumo:
We are investigating effects of the depsipeptide geodiamolide H, isolated from the Brazilian sponge Geodia corticostylifera, on cancer cell lines grown in 3D environment. As shown previously geodiamolide H disrupts actin cytoskeleton in both sea urchin eggs and breast cancer cell monolayers. We used a normal mammary epithelial cell line MCF 10A that in 3D assay results formation of polarized spheroids. We also used cell lines derived from breast tumors with different degrees of differentiation: MCF7 positive for estrogen receptor and the Hs578T, negative for hormone receptors. Cells were placed on top of Matrigel. Spheroids obtained from these cultures were treated with geodiamolide H. Control and treated samples were analyzed by light and confocal microscopy. Geodiamolide H dramatically affected the poorly differentiated and aggressive Hs578T cell line. The peptide reverted HsS78T malignant phenotype to polarized spheroid-like structures. MCF7 cells treated by geodiamolide H exhibited polarization compared to controls. Geodiamolide H induced striking phenotypic modifications in Hs578T cell line and disruption of actin cytoskeleton. We investigated effects of geodiamolide H on migration and invasion of Hs578T cells. Time-lapse microscopy showed that the peptide inhibited migration of these cells in a dose-dependent manner. Furthermore invasion assays revealed that geodiamolide H induced a 30% decrease on invasive behavior of Hs578T cells. Our results suggest that geodiamolide H inhibits migration and invasion of Hs578T cells probably through modifications in actin cytoskeleton. The fact that normal cell lines were not affected by treatment with geodiamolide H stimulates new studies towards therapeutic use for this peptide.
Resumo:
Fluorochrome-labelled cells of two field isolates and Mycoplasma synoviae (Ms) were inoculated onto monolayer cultures of fluorochrome-labelled HEp-2 cells and monitored by confocal laser scanning microscopy (CLSM). Ms was detected initially adhered to and subsequently inside the host cells. Between 24 and 48 h of infection, Ms was detected in the perinuclear region, and after 72 h of infection was confirmed by gentamicin invasion assay. High and low passage Ms strains showed no differences in adherence or invasion. The morphology and the actin filaments of the infected HEp-2 cells were preserved throughout the study period. The observed invasion by Ms is consistent with the biology of Mollicutes, and could explain the difficulties in recovering field isolates of the mycoplasma and in controlling the infection in birds even after long-term antibiotic treatment. (C) 2009 Elsevier Ltd. All rights reserved.