3 resultados para Pedagogical movements
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Ecological studies of movements in animals require extensive knowledge of direction, distance and frequency of movements. The purpose of this study was to describe the daily and seasonal movements in a population of the South American rattlesnake, Crotalus durissus. The study population inhabits a cerrado area in southeastern Brazil. Snakes were tracked with externally attached radio-transmitters and thread bobbins. Larger animals tended to make more extensive daily movements, moving further from the initial site of capture. There were no differences in average daily movements between sexes. Site fidelity was higher in the dry season for both sexes. Both sexes moved distances twice as long as those calculated by drawing a straight line between consecutive points. The movement pattern of C. durissus seemed to be similar to that observed in other tropical pit vipers, such as species of the genus Bothrops.
Resumo:
Edge effects are suggested to have great impact on the persistence of species in fragmented landscapes. We tested edge avoidance by forest understory passerines in the Brazilian Atlantic Rainforest and also compared their mobility and movement patterns in contiguous and fragmented landscapes to assess whether movements would increase in the fragmented landscape. Between 2003 and 2005, 96 Chiroxiphia caudata, 38 Pyriglena leucoptera and 27 Sclerurus scansor were radio-tracked. The most strictly forest species C. caudata and S scansor avoided forest edges while P leucoptera showed affinities for the edge Both sensitive species showed larger mean step length and maximal observed daily distance in the fragmented forest versus the unfragmented forest. P. leucoptera did not show any significant difference. There were no significant differences in proportional daily home range use for any of the three species. Our results suggested that fragmentation and the consequent increase in edge areas do influence movement behavior of sensitive forest understory birds that avoided the use of edges and increased the speed and distance they covered daily. For the most restricted forest species, it would be advisable to protect larger patches of forest instead of many small or medium fragments connected by narrow corridors. However, by comparing our data with that obtained earlier, we concluded that movement behavior of resident birds differs from that of dispersing birds and might not allow to infer functional connectivity or landscape-scale sensitivity to fragmentation; a fact that should be taken into consideration when suggesting conservation strategies. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Mandibular movements occur through the triggering of trigeminal motoneurons. Aberrant movements by orofacial muscles are characteristic of orofacial motor disorders, such as nocturnal bruxism (clenching or grinding of the dentition during sleep). Previous studies have suggested that autonomic changes occur during bruxism episodes. Although it is known that emotional responses increase jaw movement, the brain pathways linking forebrain limbic nuclei and the trigeminal motor nucleus remain unclear. Here we show that neurons in the lateral hypothalamic area, in the central nucleus of the amygdala, and in the parasubthalamic nucleus, project to the trigeminal motor nucleus or to reticular regions around the motor nucleus (Regio h) and in the mesencephalic trigeminal nucleus. We observed orexin co-expression in neurons projecting from the lateral hypothalamic area to the trigeminal motor nucleus. In the central nucleus of the amygdala, neurons projecting to the trigeminal motor nucleus are innervated by corticotrophin-releasing factor immunoreactive fibers. We also observed that the mesencephalic trigeminal nucleus receives dense innervation from orexin and corticotrophin-releasing factor immunoreactive fibers. Therefore, forebrain nuclei related to autonomic control and stress responses might influence the activity of trigeminal motor neurons and consequently play a role in the physiopathology of nocturnal bruxism.