57 resultados para Pavlovian Conditioning Of Autonomic Responses Schizophrenia
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Background: In view of conflicting neuroimaging results regarding autonomic-specific activity within the anterior cingulate cortex (ACC), we investigated autonomic responses to direct brain stimulation during sterecitactic limbic surgery. Methods: Skin conductance activity and accelerative heart rate responses to multi-voltage stimulation of the ACC (n = 7) and paralimbic subcauclate (n = 5) regions were recorded during bilateral anterior cingulotomy and bilateral subcauclate tractotomy (in patients that had previously received an adequate lesion in the ACC), respectively. Results: Stimulations in both groups were accompanied by increased autonomic arousal. Skin conductance activity was significantly increased during ACC stimulations compared with paralimbic targets at 2 V (2.34 +/- .68 [score in microSiemens +/- SE] vs. .34 +/- .09, p = .013) and 3 V (3.52 +/- .86 vs. 1.12 +/- .37, p = .036), exhibiting a strong ""voltage-response"" relationship between stimulus magnitude and response amplitude (difference from 1 to 3 V = 1.15 +/- .90 vs. 3.52 +/- .86, p = .041). Heart rate response was less indicative of between-group differences. Conclusions: This is the first study of its kind aiming at seeking novel insights into the mechanisms responsible for central autonomic modulation. It supports a concept that interregional interactions account for the coordination of autonomic arousal.
Resumo:
Background: The Lateral Septal Area (LSA) is involved with autonomic and behavior responses associated to stress. In rats, acute restraint (RS) is an unavoidable stress situation that causes autonomic (body temperature, mean arterial pressure (MAP) and heart rate (HR) increases) and behavioral (increased anxiety-like behavior) changes in rats. The LSA is one of several brain regions that have been involved in stress responses. The aim of the present study was to investigate if the neurotransmission blockade in the LSA would interfere in the autonomic and behavioral changes induced by RS. Methodology/Principal Findings: Male Wistar rats with bilateral cannulae aimed at the LSA, an intra-abdominal datalogger (for recording internal body temperature), and an implanted catheter into the femoral artery (for recording and cardiovascular parameters) were used. They received bilateral microinjections of the non-selective synapse blocker cobalt chloride (CoCl(2), 1 mM/ 100 nL) or vehicle 10 min before RS session. The tail temperature was measured by an infrared thermal imager during the session. Twenty-four h after the RS session the rats were tested in the elevated plus maze (EPM). Conclusions/Significance: Inhibition of LSA neurotransmission reduced the MAP and HR increases observed during RS. However, no changes were observed in the decrease in skin temperature and increase in internal body temperature observed during this period. Also, LSA inhibition did not change the anxiogenic effect induced by RS observed 24 h later in the EPM. The present results suggest that LSA neurotransmission is involved in the cardiovascular but not the temperature and behavioral changes induced by restraint stress.
Resumo:
Moraes DJA, Bonagamba LGH, Zoccal DB, Machado BH. Modulation of respiratory responses to chemoreflex activation by L-glutamate and ATP in the rostral ventrolateral medulla of awake rats. Am J Physiol Regul Integr Comp Physiol 300: R1476-R1486, 2011. First published March 16, 2011; doi:10.1152/ajpregu.00825.2010.-Presympathetic neurons in the different anteroposterior aspects of rostral ventrolateral medulla (RVLM) are colocalized with expiratory [Botzinger complex (BotC)] and inspiratory [pre-Botzinger complex (pre-BotC)] neurons of ventral respiratory column (VRC), suggesting that this region integrates the cardiovascular and respiratory chemoreflex responses. In the present study, we evaluated in different anteroposterior aspects of RVLM of awake rats the role of ionotropic glutamate and purinergic receptors on cardiorespiratory responses to chemoreflex activation. The bilateral ionotropic glutamate receptors antagonism with kynurenic acid (KYN) (8 nmol/50 nl) in the rostral aspect of RVLM (RVLM/BotC) enhanced the tachypneic (120 +/- 9 vs. 180 +/- 9 cpm; P < 0.01) and attenuated the pressor response (55 +/- 2 vs. 15 +/- 1 mmHg; P < 0.001) to chemoreflex activation (n = 7). On the other hand, bilateral microinjection of KYN into the caudal aspect of RVLM (RVLM/pre-BotC) caused a respiratory arrest in four awake rats used in the present study. Bilateral P2X receptors antagonism with PPADS (0.25 nmol/50 nl) in the RVLM/BotC reduced chemoreflex tachypneic response (127 +/- 6 vs. 70 +/- 5 cpm; P < 0.001; n = 6), but did not change the chemoreflex pressor response. In addition, PPADS into the RVLM/BtC attenuated the enhancement of the tachypneic response to chemoreflex activation elicited by previous microinjections of KYN into the same subregion (188 +/- 2 vs. 157 +/- 3 cpm; P < 0.05; n = 5). Our findings indicate that: 1) L-glutamate, but not ATP, in the RVLM/BtC is required for pressor response to peripheral chemoreflex and 2) both transmitters in the RVLM/BtC are required for the processing of the ventilatory response to peripheral chemoreflex activation in awake rats.
Resumo:
Background: Hypertension, diabetes and obesity are not isolated findings, but a series of interacting interactive physiologic derangements. Taking into account genetic background and lifestyle behavior, AI (autonomic imbalance) could be a common root for RHTN (resistant hypertension) or RHTN plus type 2 diabetes (T2D) comorbidity development. Moreover, circadian disruption can lead to metabolic and vasomotor impairments such as obesity, insulin resistance and resistant hypertension. In order to better understand the triggered emergence of obesity and T2D comorbidity in resistant hypertension, we investigated the pattern of autonomic activity in the circadian rhythm in RHTN with and without type 2 diabetes (T2D), and its relationship with serum adiponectin concentration. Methods: Twenty five RHTN patients (15 non-T2D and 10 T2D, 15 males, 10 females; age range 34 to 70 years) were evaluated using the following parameters: BMI (body mass index), biochemical analysis, serum adiponectinemia, echocardiogram and ambulatory electrocardiograph heart rate variability (HRV) in time and frequency domains stratified into three periods: 24 hour, day time and night time. Results: Both groups demonstrated similar characteristics despite of the laboratory analysis concerning T2D like fasting glucose, HbA1c levels and hypertriglyceridemia. Both groups also revealed disruption of the circadian rhythm: inverted sympathetic and parasympathetic tones during day (parasympathetic > sympathetic tone) and night periods (sympathetic > parasympathetic tone). T2D group had increased BMI and serum triglyceride levels (mean 33.7 +/- 4.0 vs 26.6 +/- 3.7 kg/m(2) - p = 0.00; 254.8 +/- 226.4 vs 108.6 +/- 48.7 mg/dL - p = 0.04), lower levels of adiponectin (6729.7 +/- 3381.5 vs 10911.5 +/- 5554.0 ng/mL - p = 0.04) and greater autonomic imbalance evaluated by HRV parameters in time domain compared to non-T2D RHTN patients. Total patients had HRV correlated positively with serum adiponectin (r = 0.37 [95% CI - 0.04 - 1.00] p = 0.03), negatively with HbA1c levels (r = -0.58 [95% CI -1.00 - -0.3] p = 0.00) and also adiponectin correlated negatively with HbA1c levels (r = -0.40 [95% CI -1.00 - -0.07] p = 0.02). Conclusion: Type 2 diabetes comorbidity is associated with greater autonomic imbalance, lower adiponectin levels and greater BMI in RHTN patients. Similar circadian disruption was also found in both groups indicating the importance of lifestyle behavior in the genesis of RHTN.
Resumo:
Introduction: Among patients with congestive heart failure (CHF) both obstructive and central sleep apnea (SA) are associated with increased sympathetic activity. However, the day-night pattern of cardiac autonomic nervous system modulation in CHF patients with and without sleep apnea is unknown. Material and methods: Twenty-five CHF patients underwent polysomnography with simultaneous beat-to-beat blood pressure (Portapres), respiration and electrocardiogram monitoring. Patients were divided according to the presence (SA, n=17) and absence of SA (NoSA, n=8). Power spectral analyses of heart rate variability (HRV) and spontaneous baroreflex sensitivity (BRS) were determined in periods with stable breathing while awake at 6 AM, 10 AM, 10 PM, as well as during stage 2 sleep. In addition, muscle sympathetic nerve activity (MSNA) was evaluated at 10 AM. Results: RR variance, low-frequency (LF), high-frequency (HF) powers of HRV, and BRS were significantly lower in patients with SA compared with NoSA in all periods. HF power, a marker of vagal activity, increased during sleep in patients with NoSA but in contrast did not change across the 24-hour period in patients with SA. MSNA was significantly higher in patients with SA compared with NoSA. RR variance, LF and HF powers correlated inversely with simultaneous MSNA (r=-0.64, -0.61, and -0.61 respectively; P < 0.01). Conclusions: Patients with CHF and SA present a reduced and blunted cardiac autonomic modulation across the 24-hour period. These findings may help to explain the increased cardiovascular risk in patients with CHF and SA. (C) 2009 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Activation of 5-HT2C receptors in limbic structures such as the amygdala and hippocampus increases anxiety. Indirect evidence obtained with non-selective 5-HT2C-interacting drugs suggests that the same may occur in the dPAG, a brainstem region consistently implicated in the genesis/regulation of panic attacks. In this study we used more selective agonists and antagonists to unveil the role played by dPAG 5-HT2C receptors in the regulation of anxiety- and panic-related defensive behaviors. Our results showed that intra-dPAG microinjection of the endogenous agonist 5-HT (20 nmol) or the 5-HT2C receptor agonists MK-212 (1 and 10 nmol) and RO-600175 (40 nmol) significantly increased inhibitory avoidance acquisition in rats tested in the elevated T-maze, suggesting an anxiogenic effect. 5-HT, but not the two 5-HT2C receptor agonists, inhibited escape performance. In the elevated T-maze, inhibitory avoidance and escape responses have been related to generalized anxiety and panic attacks, respectively. The behavioral effects caused by 5-HT and MK-212 were fully blocked by previous local microinjection of the 5-HT2C receptor antagonist SB-242084. Intra-dPAG injection of MK-212 also failed to affect escape expression in another test relating this behavior to panic, the electrical stimulation of the dPAG. Overall, the results indicate that 5-HT2C receptors in the dPAG are preferentially involved in the regulation of defensive behaviors related to anxiety, but not panic. This finding extends to the dPAG the prominent role that has been attributed to 5-HT2C receptors in anxiety generation. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Classical and operant conditioning principles, such as the behavioral discrepancy-derived assumption that reinforcement always selects antecedent stimulus and response relations, have been studied at the neural level, mainly by observing the strengthening of neuronal responses or synaptic connections. A review of the literature on the neural basis of behavior provided extensive scientific data that indicate a synthesis between the two conditioning processes based mainly on stimulus control in learning tasks. The resulting analysis revealed the following aspects. Dopamine acts as a behavioral discrepancy signal in the midbrain pathway of positive reinforcement, leading toward the nucleus accumbens. Dopamine modulates both types of conditioning in the Aplysia mollusk and in mammals. In vivo and in vitro mollusk preparations show convergence of both types of conditioning in the same motor neuron. Frontal cortical neurons are involved in behavioral discrimination in reversal and extinction procedures, and these neurons preferentially deliver glutamate through conditioned stimulus or discriminative stimulus pathways. Discriminative neural responses can reliably precede operant movements and can also be common to stimuli that share complex symbolic relations. The present article discusses convergent and divergent points between conditioning paradigms at the neural level of analysis to advance our knowledge on reinforcement.
Effect of estradiol benzoate microinjection into the median raphe nucleus on contextual conditioning
Resumo:
Estrogen deficiency has been associated with stress, anxiety and depression. Estrogen receptors have been identified in the median raphe nucleus (MRN). This structure is the main source of serotonergic projections to the hippocampus, a forebrain area implicated in the regulation of defensive responses and in the resistance to chronic stress. There is reported evidence indicating that estrogen modulates 5-HT(1A) receptor function. In the MRN, somatodendritic 5-HT(1A) receptors control the activity of serotonergic neurones by negative feedback. The present study has evaluated the effect of intra-MRN injection of estradiol benzoate (EB, 600 or 1200 ng/0.2 mu l) on the performance of ovariectormized rats submitted to contextual conditioning. Additionally, the same treatment was given after intra-MRN injection of Way 100635 (100 ng/0.2 mu l). a 5-HT(1A) receptor antagonist. Both doses of EB decreased freezing and increased rearing, indicating an anxiolytic effect. Pretreatment with Way 100635 antagonized the anxiolytic effect of estradiol. On the basis of these results, it may be suggested that estrogens modulate anxiety by acting on 5-HT(1A) receptors localized in the MRN. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Electrical or chemical stimulation of the inferior colliculus (IC) induces fear-like behaviors. More recently, consistent evidence has shown that electrical stimulation of the central nucleus of the IC supports Pavlovian conditioning and latent inhibition (Li). LI is characterized by retardation in conditioning and also by an impaired ability to ignore irrelevant stimuli, after a non-reinforced pre-exposure to the conditioned stimulus. LI has been proposed as a behavioral model of cognitive abnormalities seen in schizophrenia. The aim of the present study was to determine whether dopaminergic mechanisms in the IC are involved in LI of the conditioned emotional response (CER). To induce LI, a group of rats was pre-exposed (PE) to six tones in two sessions, while rats that were not pre-exposed (NPE) had two sessions without tone presentations. The conditioning consisted of two tone presentations to the animal, followed immediately by a foot shock. PE and NPE rats received IC microinjections of physiological saline, the dopaminergic agonist apomorphine (9.0 mu g/0.5 mu L/side), or the dopaminergic antagonist haloperidol (0.5 mu g/0.5 mu L/side) before both pre-exposure and conditioning. During the test, the PE rats that received saline or haloperidol had a lower suppression of the licking response compared to NPE rats that received vehicle or haloperidol, indicating that latent inhibition was induced. There was no significant difference in the suppression ratio in rats that received apomorphine injections into the IC, indicating reduced latent inhibition. These results suggest that dopamine-mediated mechanisms of the IC are involved in the development of LI. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
Sprague Dawley rats were submitted to bilateral ventral hippocampus lesions 7 days after birth. This corresponds to the Lipska and Weinberger`s procedure for modeling schizophrenia. The aim of the present work was to test the learning capacity of such rats with an associative Pavlovian and an instrumental learning paradigm, both methods using reward outcome (food, sucrose or polycose). The associative paradigm comprised also a second learning test with reversed learning contingencies. The instrumental conditioning comprised an extinction test under outcome devaluation conditions. Neonatally lesioned rats, once adults (over 60 days of age), showed a conditioning deficit in the associative paradigm but not in the instrumental one. Lesioned rats remained able to adapt as readily as controls to the reversed learning contingency and were as sensitive as controls to the devaluation of outcome. Such observations indicate that the active access (instrumental learning) to a reward could have compensated for the deficit observed under the ""passive"" stimulus-reward associative learning condition. This feature is compared to the memory management impairments observed in clinical patients. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
The paraventricular nucleus of the hypothalamus (PVN) has been implicated in several aspects of cardiovascular control. Stimulation of the PVN evokes changes in blood pressure and heart rate. Additionally, this brain area is connected to several limbic structures implicated in behavioral control, as well as to forebrain and brainstem structures involved in cardiovascular control. This evidence indicates that the PVN may modulate cardiovascular correlates of behavioral responses to stressful stimuli. Acute restraint is an unavoidable stressor that evokes marked and sustained cardiovascular changes, which are characterized by elevated mean arterial pressure (MAP) and an intense heart rate (HR) increase. We report on the effect of inhibition of PVN synapses on MAP and HR responses evoked by acute restraint in rats. Bilateral microinjection of the nonspecific synaptic blocker cobalt (CoCl2, 1mM/100nl) into the PVN did not change the HR response or the initial peak of the MAP response to restraint stress, but reduced the area under the curve of the MAP response. Moreover, bilateral microinjection of cobalt in areas surrounding the PVN did not change the cardiovascular response to restraint. These results indicate that synapses in the PVN are involved in the neural pathway that controls blood pressure changes evoked by restraint.
Resumo:
Systemic administration of cannabidiol (CBD), a non-psychotomimetic compound from Cannabis sativa, attenuates the cardiovascular and behavioral responses to restraint stress. Although the brain structures related to CBD effects are not entirely known, they could involve brainstem structures responsible for cardiovascular control. Therefore, to investigate this possibility the present study verified the effects of CBD (15.30 and 60 nmol) injected into the cisterna magna on the autonomic and behavioral changes induced by acute restraint stress. During exposure to restraint stress (1 h) there was a significant increase in mean arterial pressure (MAP) and heart rate (HR). Also, 24 h later the animals showed a decreased percentage of entries onto the open arms of the elevated plus-maze. These effects were attenuated by CBD (30 nmol). The drug had no effect on MAP and HR baseline values. These results indicate that intracisternal administration of CBD can attenuate autonomic responses to stress. However, since CBD decreased the anxiogenic consequences of restraint stress, it is possible that the drug is also acting on forebrain structures. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
The arterial partial pressure (P CO2) of carbon dioxide is virtually constant because of the close match between the metabolic production of this gas and its excretion via breathing. Blood gas homeostasis does not rely solely on changes in lung ventilation, but also to a considerable extent on circulatory adjustments that regulate the transport of CO2 from its sites of production to the lungs. The neural mechanisms that coordinate circulatory and ventilatory changes to achieve blood gas homeostasis are the subject of this review. Emphasis will be placed on the control of sympathetic outflow by central chemoreceptors. High levels of CO2 exert an excitatory effect on sympathetic outflow that is mediated by specialized chemoreceptors such as the neurons located in the retrotrapezoid region. In addition, high CO2 causes an aversive awareness in conscious animals, activating wake-promoting pathways such as the noradrenergic neurons. These neuronal groups, which may also be directly activated by brain acidification, have projections that contribute to the CO2-induced rise in breathing and sympathetic outflow. However, since the level of activity of the retrotrapezoid nucleus is regulated by converging inputs from wake-promoting systems, behavior-specific inputs from higher centers and by chemical drive, the main focus of the present manuscript is to review the contribution of central chemoreceptors to the control of autonomic and respiratory mechanisms.
Resumo:
Rats were trained in a Pavlovian serial ambiguous target discrimination, in which a target cue was reinforced if it was preceded by one stimulus (P -> T+) but was not reinforced if it was preceded by another stimulus (N -> T-). Test performance indicated that stimulus control by these features was weaker than that acquired by features trained within separate serial feature positive (P -> T+, T-) and serial feature negative (N -> W-, W+) discriminations. The form of conditioned responding and the patterns of transfer observed suggested that the serial ambiguous target discrimination was solved by occasion setting. The data are discussed in terms of the use of retrospective coding strategies when solving Pavlovian serial conditional discriminations, and the acquisition of special properties by both feature and target stimuli. (C) 2008 Published by Elsevier B.V.
Resumo:
The neonatal hippocampus lesion thought to model schizophrenia should show the same modifications in behavioural tests as other models, especially pharmacological models. namely decreased latent inhibition, blocking and overshadowing. The present study is set out to evaluate overshadowing in order to complement our previous studies, which had tested latent inhibition. ""Overshadowing"" refers to the decreased conditioning that occurs when the to-be-conditioned stimulus is combined with another stimulus at the conditioning stage. We used the same two Pavlovian conditioning paradigms as in our previous works, namely conditioned taste aversion (CTA) and conditioned emotional response (CER). A sweet taste overshadowed a salty conditioned stimulus, and a tone overshadowed a flashing light. Totally different stimuli were used to counter possible sensory biases. The protocols were validated with two groups of Sprague Dawley rats. The same two protocols were then applied to a cohort of rats whose ventral hippocampus had been destroyed when they were 7 days old. Only rats with extended ventral hippocampus lesions were included. The overall effect of Pavlovian conditioning was attenuated, significantly so in the conditioned emotional response paradigm, but overshadowing appeared not to be modified in either the conditioned emotional response or the conditioned taste aversion paradigm. (C) 2008 Elsevier B.V. All rights reserved.