11 resultados para Pathogen Pseudomonas-syringae
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
The opportunistic pathogen Pseudomonas aeruginosa PA14 possesses four fimbrial cup clusters, which may confer the ability to adapt to different environments. cupD lies in the pathogenicity island PAPI-1 next to genes coding for a putative phosphorelay system composed of the hybrid histidine kinase RcsC and the response regulator RcsB. The main focus of this work was the regulation of cupD at the mRNA level. It was found that the HN-S-like protein MvaT does not exert a strong influence on cupD transcript levels, as it does for cupA. cupD transcription is higher in cultures grown at 28 degrees C, which agrees with a cupD mutant presenting attenuated virulence only in a plant model, but not in a mouse model of infection. Whereas an rcsC in-frame deletion mutant presented higher levels of cupD mRNA, rcsB deletion had the opposite effect. Accordingly, overexpression of RcsB increased the levels of cupD transcription, and promoted biofilm formation and the appearance of fimbriae. A single transcription start site was determined for cupD and transcription from this site was induced by RcsB. A motif similar to the enterobacterial RcsB/RcsA-binding site was detected adjacent to the -35 region, suggesting that this could be the RcsB-binding site. Comparison of P. aeruginosa and Escherichia coli Rcs may provide insights into how similar systems can be used by different bacteria to control gene expression and to adapt to various environmental conditions.
Resumo:
Balanoposthitis is defined as the inflammation of the glans penis and its foreskin. In the presence of other underlying medical conditions, this localized infection may spread systemically, serving as a source of fever and bacteremia in neutropenic males. Two rare cases of balanoposthitis caused by a clonally related Pseudomonas aeruginosa isolate co-producing the SPM-1 metallo-beta-lactamase and the novel 16S rRNA methylase RmtD are described. Four multidrug-resistant (MDR) P. aeruginosa isolates were successively recovered from glans/foreskin swabs and urine cultures from two uncircumcised pediatric patients, one with Burkitt`s non-Hodgkin`s lymphoma and one with acute lymphoblastic leukemia. Clinically, preputial colonization by MDR P. aeruginosa evolved to severe balanoposthitis with glans/foreskin lesions as a source of fever. Combination therapy of ciprofloxacin and/or aztreonam (systemic) plus polymyxin B (topical) was effective once reversion of the neutropenic condition was achieved. Although P. aeruginosa remains an unusual cause of balanoposthitis, these cases should alert the physician to the potential pathogenicity of this bacterium. Furthermore, co-production of metallo-beta-lactamase and 16S rRNA methylase has a potential impact on the empirical management of complicated infections caused by P. aeruginosa. Crown Copyright (C) 2009 Published by Elsevier Ltd on behalf of International Society for Infectious Diseases. All rights reserved.
Resumo:
The production of PHA from plant oils by Pseudomonas species soil isolated from a sugarcane crop was evaluated. Out of 22 bacterial strains three were able to use efficiently plant oils to grow and to accumulate PHA. Pseudomonas putida and Pseudomonas aeruginosa strains produced PHA presenting differences on monomer composition compatible with variability on monomer specificity of their PHA biosynthesis system. The molar fraction of 3-hydroxydodecanoate detected in the PHA was linearly correlated to the oleic acid supplied. A non-linear relationship between the molar fractions of 3-hydroxy-6-dodecenoate (3HDd Delta(6)) detected in PHA and the linoleic acid supplied was observed, compatible with saturation in the biosynthesis system capability to channel intermediate of P-oxidation to PHA synthesis. Although P. putida showed a higher 3HDd Delta(6) yield from linoleic acid when compared to P. aeruginosa, in both species it was less than 10% of the maximum theoretical value. These results contribute to the knowledge about the biosynthesis of PHA with a controlled composition from plant oils allowing in the future establishing the production of these polyesters as tailor-made polymers. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The ubiquitous Pseudallescheria boydii (anamorph Scedosporium apiospermum) is a saprophytic filamentous fungus recognized as a potent etiologic agent of a wide variety of infections in immunocompromised as well as in immunocompetent patients. Very little is known about the virulence factors expressed by this fungal pathogen. The present review provides an overview of recent discoveries related to the identification and biochemical characterization of potential virulence attributes produced by P. boydii, with special emphasis on surface and released molecules. These structures include polysaccharides (glucans), glycopeptides (peptidorhamnomannans), glycolipids (glucosylceramides) and hydrolytic enzymes (proteases, phosphatases and superoxide dismutase), which have been implicated in some fundamental cellular processes in P. boydii including growth, differentiation and interaction with host molecules. Elucidation of the structure of cell surface components as well as the secreted molecules, especially those that function as virulence determinants, is of great relevance to understand the pathogenic mechanisms of P. boydii.
Resumo:
Isolated from the mycelium, of Scedosporium prolificans were complex glycoproteins (RMP-Sp), with three structurally related components (HPSEC). RMP-Sp contained 35% protein and 62% carbohydrate with Rha, Ara, Man, Gal, Glc, and GlcNH(2) in a 18:1:24:8:6:5 molar ratio. Methylation analysis showed mainly nonreducing end- of Galp (13%), nonreducing end- (9%),2-O-(13%), and 3-O-subst. Rhap (7%), nonreducing end-(11%), 2-O-(10%), 3-O-(14%), and 2,6-di-O-subst. Manp units (13%). Mild reductive P-elimination of RMP-Sp gave alpha-L-Rhap-(1-->2)-alpha-L-Rhap-(1-->3)-alpha-L-Rhap-(1-->3)-alpha-D-Manp-(1-->2)-D-Man-ol, with Man-ol substituted at O-6 with beta-D-Galp units, a related pentasaccharide lacking beta-D-Galp units, and beta-D-Galp-(1-->6)-[alpha-D-Manp-(1-->2)]-D-Man-ol in a 16:3:1 w/w ratio. Traces of Man-ol and Rha-ol were detected. ESI-MS showed HexHex-o1 and HCX(3-6)Hex-ol components. Three rhamnosyl units were peeled off successively from the penta- and hexasaccharide by ESI-MS-MS. The carbohydrate epitopes of RMP-Sp differ from those of the glycoprotein of Pseudallescheria boydii, a related opportunistic pathogen. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
P>Scedosporium apiospermum is an emerging agent of opportunistic mycoses in humans. Previously, we showed that mycelia of S. apiospermum secreted metallopeptidases which were directly linked to the destruction of key host proteins. In this study, we analysed the effect of metallopeptidase inhibitors on S. apiospermum development. As germination of inhaled conidia is a crucial event in the infectious process of S. apiospermum, we studied the morphological transformation induced by the incubation of conidia in Sabouraud-dextrose medium at 37 degrees C. After 6 h, some conidia presented a small projection resembling a germ-tube. A significant increase, around sixfold, in the germ-tube length was found after 12 h, and hyphae were exclusively observed after 24 h. Three distinct metallopeptidase inhibitors were able to arrest the transformation of conidia into hyphae in different ways; for instance, 1,10-phenanthroline (PHEN) completely blocked this process at 10 mu mol l-1, while ethylenediamine tetraacetic acid (EDTA) and ethylene glycol-bis (beta-aminoethyl ether; EGTA) only partially inhibited the differentiation at up to 10 mmol l-1. EGTA did not promote any significant reduction in the conidial growth, while PHEN and EDTA, both at 10 mmol l-1, inhibited the proliferation around 100% and 65%, respectively. The secretion of polypeptides into the extracellular environment and the metallopeptidase activity secreted by mycelia were completely inhibited by PHEN. These findings suggest that metallo-type enzymes could be potential targets for future therapeutic interventions against S. apiospermum.
Resumo:
Chlorocatechol 1,2-dioxygenase (1,2-CCD) is a non-heme iron protein involved in the intradiol cleavage of aromatic compounds that are recalcitrant to biodegradation. In particular, 1,2-CCD catalyzes the conversion of catechol and its halogenated derivatives to cis-cis muconic acid. In this study we describe a series of experiments concerning the interaction of chlorocatechol 1,2-dioxygenase from Pseudomonas putida (Pp1,2-CCD) with cis-cis muconic acid. We used single-injection ITC to show that the reaction product inhibits enzyme kinetics. DSC and EPR measurements probed whether this was accomplished by a direct binding of the product to the enzyme active site. DSC shows that cis-cis muconic acid affects the thermal unfolding of the protein and allowed us to estimate a binding constant. Furthermore, EPR spectra of the Fe(III) center demonstrate that, upon product binding, a significant decrease in resonance intensity is observed, indicating that cis-cis muconic acid binds directly to the active site. Based on the increasing interest for understanding dioxygenases mechanism of action and, moreover, how to control such process, our data indicate that the product of the reaction does play a relevant role in the catalysis and should therefore be taken into account when one thinks about ways of regulating enzyme activity. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Nitrogen uptake and metabolism are essential to microbial growth. Gat1 belongs to a conserved family of zinc finger containing transcriptional regulators known as GATA-factors. These factors activate the transcription of Nitrogen Catabolite Repression (NCR) sensitive genes when preferred nitrogen sources are absent or limiting. Cryptococcus neoformans GAT1 is an ortholog to the Aspergillus nidulans AreA and Candida albicans GAD genes. In an attempt to define the function of this transcriptional regulator in C. neoformans, we generated null mutants (gat1 Delta) of this gene. The gat 1 mutant exhibited impaired growth on all amino acids tested as sole nitrogen sources, with the exception of arginine and proline. Furthermore, the gat1 mutant did not display resistance to rapamycin, an immunosuppressant drug that transiently mimics a low-quality nitrogen source. Gal is not required for C. neoformans survival during macrophage infection or for virulence in a mouse model of cryptococcosis. Microarray analysis allowed the identification of target genes that are regulated by Gat1 in the presence of proline, a poor and non-repressing nitrogen source. Genes involved in ergosterol biosynthesis, iron uptake, cell wall organization and capsule biosynthesis, in addition to NCR-sensitive genes, are Gat1-regulated in C. neoformans. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
XACb0070 is an uncharacterized protein coded by the two large plasmids isolated from Xanthomonas axonopodis pv. cirri, the agent of citrus canker and responsible for important economical losses in citrus world production. XACb0070 presents sequence homology only with other hypothetical proteins belonging to plant pathogens, none of which have their structure determined. The NMR-derived solution structure reveals this protein is a homodimer in which each monomer presents two domains with different structural and dynamic properties: a folded N-terminal domain with beta alpha alpha topology which mediates dimerization and a long disordered C-terminal tail. The folded domain shows high structural similarity to the ribbon-helix-helix transcriptional repressors, a family of DNA-binding proteins of conserved 3D fold but low sequence homology: indeed XACb0070 binds DNA. Primary sequence and fold comparison of XACb0070 with other proteins of the ribbon-helix-helix family together with examination of the genes in the vicinity of xacb0070 suggest the protein might be the component of a toxin-antitoxin system. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
The wetting behavior of rhamnolipids produced by Pseudomonas aeruginosa LBI strain grown on waste oil substrate and sodium dodecyl sulfate (SDS) on glass, polyethylene terephthalate (PET), poly(vinyl chloride) (PVC), poly(epsilon-caprolactone) (PCL) and polymer blend (PVC-PCL) was investigated by the measuring contact angle of sessile drops, to determine the wetting characteristics of rhamnolipids. The comparison of the wetting profiles showed that at low SDS and rhamnolipid concentrations, the contact angle increased and when the concentration of the surfactant increased further, the contact angle decreased. The blend surface (PVC-PCL) showed better wettability than the homopolymers themselves and the blend changed the surface hydrophobicity of the polymer, making it more hydrophilic. The rhamnolipids produced by the LBI strain exhibited superior wetting abilities than the chemical surfactant SDS one. This is the first work that evaluates the wetting properties of rhamnolipids on polymer blends.
Resumo:
Glycerol, cassava wastewater (CW), waste cooking oil and CW with waste frying oils were evaluated as alternative low-cost carbon substrates for the production of rhamnolipids and polyhydroxyalkanoates (PHAs) by various Pseudomonas aeruginosa strains. The polymers and surfactants produced were characterized by gas chromatography-mass spectrophotometry (MS) and by high-performance liquid chromatography-MS, and their composition was found to vary with the carbon source and the strain used in the fermentation. The best overall production of rhamnolipids and PHAs was obtained with CW with frying oil as the carbon source, with PHA production corresponding to 39% of the cell dry weight and rhamnolipid production being 660 mg l(-1). Under these conditions, the surface tension of the culture decreased to 30 mN m(-1), and the critical micelle concentration was 26.5 mg l(-1). It would appear that CW with frying oil has the highest potential as an alternative substrate, and its use may contribute to a reduction in the overall environmental impact generated by discarding such residues.