22 resultados para Particularly and concrete administrative act
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
The properties of recycled aggregate produced from mixed (masonry and concrete) construction and demolition (C&D) waste are highly variable, and this restricts the use of such aggregate in structural concrete production. The development of classification techniques capable of reducing this variability is instrumental for quality control purposes and the production of high quality C&D aggregate. This paper investigates how the classification of C&D mixed coarse aggregate according to porosity influences the mechanical performance of concrete. Concretes using a variety of C&D aggregate porosity classes and different water/cement ratios were produced and the mechanical properties measured. For concretes produced with constant volume fractions of water, cement, natural sand and coarse aggregate from recycled mixed C&D waste, the compressive strength and Young modulus are direct exponential functions of the aggregate porosity. Sink and float technique is a simple laboratory density separation tool that facilitates the separation of cement particles with lower porosity, a difficult task when done only by visual sorting. For this experiment, separation using a 2.2 kg/dmA(3) suspension produced recycled aggregate (porosity less than 17%) which yielded good performance in concrete production. Industrial gravity separators may lead to the production of high quality recycled aggregate from mixed C&D waste for structural concrete applications.
Resumo:
This paper presents an investigation of design code provisions for steel-concrete composite columns. The study covers the national building codes of United States, Canada and Brazil, and the transnational EUROCODE. The study is based on experimental results of 93 axially loaded concrete-filled tubular steel columns. This includes 36 unpublished, full scale experimental results by the authors and 57 results from the literature. The error of resistance models is determined by comparing experimental results for ultimate loads with code-predicted column resistances. Regression analysis is used to describe the variation of model error with column slenderness and to describe model uncertainty. The paper shows that Canadian and European codes are able to predict mean column resistance, since resistance models of these codes present detailed formulations for concrete confinement by a steel tube. ANSI/AISC and Brazilian codes have limited allowance for concrete confinement, and become very conservative for short columns. Reliability analysis is used to evaluate the safety level of code provisions. Reliability analysis includes model error and other random problem parameters like steel and concrete strengths, and dead and live loads. Design code provisions are evaluated in terms of sufficient and uniform reliability criteria. Results show that the four design codes studied provide uniform reliability, with the Canadian code being best in achieving this goal. This is a result of a well balanced code, both in terms of load combinations and resistance model. The European code is less successful in providing uniform reliability, a consequence of the partial factors used in load combinations. The paper also shows that reliability indexes of columns designed according to European code can be as low as 2.2, which is quite below target reliability levels of EUROCODE. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Low Intensity Electrical Stimulation (LIES) has been used for bone repair, but little is known about its effects on bone after menopause. Osteocytes probably play a role in mediating this physical stimulus and they could act as transducers through the release of biochemical signals, such as nitric oxide (NO). The aim of the present study was to investigate the effects of LIES on bone structure and remodeling, NOS expression and osteocyte viability in ovariectomized (OVX) rats. Thirty rats (200-220 g) were divided into 3 groups: SHAM, OVX, and OVX subjected to LIES (OVX + LIES) for 12 weeks. Following the protocol, rats were sacrificed and tibias were collected for histomorphometric analysis and immunohistochemical detection of endothelial NO synthase (eNOS), inducible NOS (iNOS), and osteocyte apoptosis (caspase-3 and TUNEL). OVX rats showed significant (p < 0.05 vs. SHAM) decreased bone volume (10% vs. 25%) and trabecular number (1.7 vs. 3.9), and increased eroded surfaces (4.7% vs. 3.2%) and mineralization surfaces (15.9% vs. 7.7%). In contrast, after LIES, all these parameters were significantly different from OVX but not different from SHAM. eNOS and iNOS were similarly expressed in subperiosteal regions of tibiae cortices of SHAM, not expressed in OVX, and similarly expressed in OVX + LIES when compared to SHAM. In OVX, the percentage of apoptotic osteocytes (24%) was significantly increased when compared to SHAM (11%) and OVX + LIES (8%). Our results suggest that LIES counteracts some effects of OVX on bone tissue preserving bone structure and microarchitecture, iNOS and eNOS expression, and osteocyte viability.
Resumo:
This work deals with the determination of crack openings in 2D reinforced concrete structures using the Finite Element Method with a smeared rotating crack model or an embedded crack model In the smeared crack model, the strong discontinuity associated with the crack is spread throughout the finite element As is well known, the continuity of the displacement field assumed for these models is incompatible with the actual discontinuity However, this type of model has been used extensively due to the relative computational simplicity it provides by treating cracks in a continuum framework, as well as the reportedly good predictions of reinforced concrete members` structural behavior On the other hand, by enriching the displacement field within each finite element crossed by the crack path, the embedded crack model is able to describe the effects of actual discontinuities (cracks) This paper presents a comparative study of the abilities of these 2D models in predicting the mechanical behavior of reinforced concrete structures Structural responses are compared with experimental results from the literature, including crack patterns, crack openings and rebar stresses predicted by both models
Resumo:
Activated slag cement (ASC) shows significantly higher shrinkage than ordinary Portland cement agglomerates. Cracking generated by shrinkage is one of the most critical drawbacks for broader applications of this promising alternative binder. This article investigates the relationship between ASC hydration, unrestrained drying and autogenous shrinkage of mortar specimens. The chemical and microstructure evolution due to hydration were determined on pastes by thermogravimetric analysis, conduction calorimetry and mercury porosimetry. Samples were prepared with ground blast furnace slag (BFS) activated with sodium silicate (silica modulus of 1.7) with 2.5, 3.5 and 4.5% of Na2O, by slag mass. The amount of activator is the primary influence on drying and autogenous shrinkage, and early hydration makes a considerable contribution to the total result, which increases with the amount of silica. Drying shrinkage occurred in two stages, the first caused by extensive water loss when the samples were exposed to the environment, and the second was associated with the hydration process and less water loss. Due to the refinement of ASC porous system, autogenous shrinkage is responsible for a significant amount of the total shrinkage. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Ethylene/vinyl acetate (EVA) copolymer. as latex or redispersable powder, is added to mortars and concrete to improve the fracture toughness, impermeability and bond strength to various substrates. The physical and chemical interactions were already proved after one day of hydration but during the first hour just the physical interaction was identified and some evidences of a chemical interaction. The aim of this paper was to evaluate the chemical interaction between EVA and Portland cement during the first hours of hydration in the thermogravimetric analysis. The results confirmed that the EVA hydrolyses in pH alkaline and consumes calcium ions from the solution, forming an organic salt (calcium acetate). reducing the calcium hydroxide content. And, its interaction occurred in the first 15 min of hydration. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Preoperative progressive pneumoperitoneum (PPP) is a safe and effective procedure in the treatment of large incisional hernia (size > 10 cm in width or length) with loss of domain (LIHLD). There is no consensus in the literature on the amount of gas that must be insufflated in a PPP program or even how long it should be maintained. We describe a technique for calculating the hernia sac volume (HSV) and abdominal cavity volume (ACV) based on abdominal computerized tomography (ACT) scanning that eliminates the need for subjective criteria for inclusion in a PPP program and shows the amount of gas that must be insufflated into the abdominal cavity in the PPP program. Our technique is indicated for all patients with large or recurrent incisional hernias evaluated by a senior surgeon with suspected LIHLD. We reviewed our experience from 2001 to 2008 of 23 consecutive hernia surgical procedures of LIHLD undergoing preoperative evaluation with CT scanning and PPP. An ACT was required in all patients with suspected LIHLD in order to determine HSV and ACV. The PPP was performed only if the volume ratio HSV/ACV (VR = HSV/ACV) was a parts per thousand yen25% (VR a parts per thousand yen 25%). We have performed this procedure on 23 patients, with a mean age of 55.6 years (range 31-83). There were 16 women and 7 men with an average age of 55.6 years (range 31-83), and a mean BMI of 38.5 kg/m(2) (range 23-55.2). Almost all patients (21 of 23 patients-91.30%) were overweight; 43.5% (10 patients) were severely obese (obese class III). The mean calculated volumes for ACV and HSV were 9,410 ml (range 6,060-19,230 ml) and 4,500 ml (range 1,850-6,600 ml), respectively. The PPP is performed by permanent catheter placed in a minor surgical procedure. The total amount of CO(2) insufflated ranged from 2,000 to 7,000 ml (mean 4,000 ml). Patients required a mean of 10 PPP sessions (range 4-18) to achieve the desired volume of gas (that is the same volume that was calculated for the hernia sac). Since PPP sessions were performed once a day, 4-18 days were needed for preoperative preparation with PPP. The mean VR was 36% (ranged from 26 to 73%). We conclude that ACT provides objective data for volume calculation of both hernia sac and abdominal cavity and also for estimation of the volume of gas that should be insufflated into the abdominal cavity in PPP.
Resumo:
Nuclear transfer of domestic cat can be used as a tool to develop reproductive biotechnologies in wild felids. The importance of cell cycle phase during the nuclear transfer has been a matter of debate since the first mammalian clone was produced. The cell cycle phase of donor cells interferes on maintenance of correct ploidy and genetic reprogramming of the reconstructed embryo. The use of G0/G1 arrested donor cells has been shown to improve nuclear transfer efficiency. The present study was conducted to test the hypothesis that domestic cat foetal fibroblasts cultured up to the fifth passage and submitted to full confluency provide a higher percentage of cells at G0/G1 stage than fibroblasts cultured in serum starved media. Results demonstrated that serum starvation increased (p < 0.05) the percentage of G0/G1 fibroblasts when compared with control. Moreover, the combined protocol using confluency and serum starvation was more efficient (p < 0.05) synchronizing cells at G0/G1 stage than serum starvation or confluency alone for the first 3 days of treatment. In conclusion, serum starvation and full confluency act in a synergistic manner to improve domestic cat foetal fibroblast cell cycle synchronization at the G0/G1 stage.
Resumo:
Thin films of mixtures containing carboxymethylcellulose acetate butyrate (CMCAB) and carbohydrate based surfactant, namely, sorbitan monopalmitate (Span 40) or poly(oxyethylene) sorbitan monopalmitate (Tween 40) were spin-coated onto silicon wafers. The effect of surfactant concentration on resulting film morphology and surface toughness Was Studied by atomic force microscopy (AFM). Upon increasing the concentration of Span 40 in the mixture, films became rougher and more heterogeneous, indicating surface enrichment by Span 40 molecules. In the case of mixtures composed by CMCAB and Tween 40, the increase of Tween 40 in the mixture led to smoother and more homogeneous films, indicating compatibility between both components. Differential scanning calorimetry (DSC) revealed that Span 40 and Tween 40 act as plasticizers for CMCAB, leading to dramatic reduction of glass transition temperature of CMCAB, namely, Delta T(g) = -158 degrees C and Delta T(g)=-179 degrees C. respectively. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
O objetivo do presente estudo foi investigar se o comportamento da qualidade de vida (QV) de cuidadores de idosos em assistência domiciliária pode ser influenciado por características sociodemográficas, pela rede de suporte oferecida ao cuidador e por variáveis relacionadas ao ato de cuidar. Foram entrevistados 40 cuidadores de idosos de um Programa de Assistência Domiciliária da cidade de São Paulo. A QV foi mensurada utilizando-se a versão brasileira do Medical Outcomes Study 36 - Item Short-Form Health Survey (SF-36). Características sociodemográficas, as variáveis relacionadas à rede de suporte oferecida ao cuidador e ao ato de cuidar foram obtidas por meio de questionário complementar. A análise de regressão linear mostrou relação independente entre três domínios do SF-36 e o maior número de horas dedicadas ao cuidado: domínios capacidade funcional, aspecto físico e aspecto emocional. Possuir mais de oito anos de escolaridade implicou em melhor pontuação no domínio estado geral de saúde e pior pontuação no domínio aspecto social. Os cuidadores com mais de 60 anos de idade apresentaram pior pontuação no domínio aspecto físico e as mulheres pior pontuação no domínio dor. Os filhos ou cônjuges que prestam cuidado aos seus pais ou parceiros apresentaram pior pontuação no domínio aspecto emocional. Os cuidadores que modificaram sua rotina para prestar os cuidados apresentaram pior pontuação no domínio saúde mental. Tanto fatores sociodemográficos como a rede de suporte oferecida ao cuidador e os fatores relacionados à dinâmica do cuidado são capazes de influenciar negativamente a QV de cuidadores principais de idosos em atendimento domiciliário.
Resumo:
The study was done to evaluate the cost-effectiveness of a national rotavirus vaccination programme in Brazilian children from the healthcare system perspective. A hypothetical annual birth-cohort was followed for a five-year period. Published and national administrative data were incorporated into a model to quantify the consequences of vaccination versus no vaccination. Main outcome measures included the reduction in disease burden, lives saved, and disability-adjusted life-years (DALYs) averted. A rotavirus vaccination programme in Brazil would prevent an estimated 1,804 deaths associated with gastroenteritis due to rotavirus, 91,127 hospitalizations, and 550,198 outpatient visits. Vaccination is likely to reduce 76% of the overall healthcare burden of rotavirus-associated gastroenteritis in Brazil. At a vaccine price of US$ 7-8 per dose, the cost-effectiveness ratio would be US$ 643 per DALY averted. Rotavirus vaccination can reduce the burden of gastroenteritis due to rotavirus at a reasonable cost-effectiveness ratio.
Resumo:
The objective of the present research was to evaluate the effect of fibre morphology (e.g., length, width, fibrillation, broken ends, content of fines and number of fibres per gram) on flocculation and drainage properties of fibre-cement suspensions and on physical properties of the fibre-cement composites. Mechanical refining was used to change the morphological properties of Eucalyptus and Pinus pulps. Results show that the mechanical refining increased the size of the formed flocs and decreased the concentration of free small particles (with dimensions between 1 and 20 pm) as a consequence of the increased fibrillation and content of fines, which increased the capacity of the fibres to capture the mineral particles. High levels of refining were necessary for Pinus pulp to obtain cement retention values similar to those obtained by unrefined Eucalyptus pulp. This is due to the higher number of fibres per gram in Eucalyptus pulp than in Pinus pulp. Pulp refining improved the packing of the particles and, although decreased the drainage rate. it contributed to a less porous structure, which improved the microstructure of the composite. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
In the present work the squeeze flow technique was used to evaluate the rheological behavior of cement-based mortars containing macroscopic aggregates up to 1.2 mm. Compositions with different water and air contents were tested at three squeezing rates (0.01, 0.1 and 1 mm/s) 15 and 60 min after mixing. The mortars prepared with low (13 wt.%) and usual water content (15 wt.%) presented opposite behaviors as a function of elapsed time and squeezing speed. The first lost its cohesion with time and required higher loads when squeezed faster, while the latter became stiffer with time and was more difficult to be squeezed slowly as a result of phase segregation. Due to the increase of air content, the effects of this compressible phase became more significant and a more complex behavior was observed. Rheological properties such as elongational viscosity and yield stress were also determined. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Chemical admixtures increase the theological complexity of cement pastes owing to their chemical and physical interactions with particles, which affects cement hydration and agglomeration kinetics. Using oscillatory rheometry and isothermal calorimetry, this article shows that the cellulose ether HMEC (hydroxymethyl ethylcellulose), widely used as a viscosity modifying agent in self-compacting concretes and dry-set mortars, displayed a steric dispersant barrier effect during the first 2 h of hydration associated to a cement retarding nature, consequently reducing the setting speed. However, despite this stabilization effect, the polymer increased the cohesion strength when comparing cement particles with the same hydration degree. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
This paper focuses on the flexural behavior of RC beams externally strengthened with Carbon Fiber Reinforced Polymers (CFRP) fabric. A non-linear finite element (FE) analysis strategy is proposed to support the beam flexural behavior experimental analysis. A development system (QUEBRA2D/FEMOOP programs) has been used to accomplish the numerical simulation. Appropriate constitutive models for concrete, rebars, CFRP and bond-slip interfaces have been implemented and adjusted to represent the composite system behavior. Interface and truss finite elements have been implemented (discrete and embedded approaches) for the numerical representation of rebars, interfaces and composites.