9 resultados para Particle Systems
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
The Lieb-Oxford bound is a constraint upon approximate exchange-correlation functionals. We explore a nonempirical tightening of that bound in both universal and electron number-dependent form. The test functional is PBE. Regarding both atomization energies (slightly worsened) and bond lengths (slightly improved), we find the PBE functional to be remarkably insensitive to the value of the Lieb-Oxford bound. This both rationalizes the use of the original Lieb-Oxford constant in PBE and suggests that enhancement factors more sensitive to sharpened constraints await discovery.
Resumo:
P>The aim of this research was to study spray drying as potential action to protect chlorophyllide from environmental conditions for shelf-life extension and characterisation of the powders. Six formulations were prepared with 7.5 and 10 g of carrier agents [gum Arabic (GA), maltodextrin (MA) and soybean protein isolate (SPI)]/100 mL of chlorophyllide solutions. The powders were evaluated for morphological characteristics (SEM), particle size, water activity, moisture, density, hygroscopicity, cold water solubility, sorption isotherms, colour and stability, during 90 days. All the powders were highly soluble, with solubility values around 97%. A significant lower hygroscopicity was observed for GA powders, whilst the lower X(m) values obtained by GAB equation fitting of the sorption isotherms was observed for the 7.5 g MA/100 mL samples. All formulations, but the 1 (7.5 g SPI/100 mL of chlorophyllide), provided excellent stability to the chlorophyllide during 90 days of storage even at room temperature.
MAGNETOHYDRODYNAMIC SIMULATIONS OF RECONNECTION AND PARTICLE ACCELERATION: THREE-DIMENSIONAL EFFECTS
Resumo:
Magnetic fields can change their topology through a process known as magnetic reconnection. This process in not only important for understanding the origin and evolution of the large-scale magnetic field, but is seen as a possibly efficient particle accelerator producing cosmic rays mainly through the first-order Fermi process. In this work we study the properties of particle acceleration inserted in reconnection zones and show that the velocity component parallel to the magnetic field of test particles inserted in magnetohydrodynamic (MHD) domains of reconnection without including kinetic effects, such as pressure anisotropy, the Hall term, or anomalous effects, increases exponentially. Also, the acceleration of the perpendicular component is always possible in such models. We find that within contracting magnetic islands or current sheets the particles accelerate predominantly through the first-order Fermi process, as previously described, while outside the current sheets and islands the particles experience mostly drift acceleration due to magnetic field gradients. Considering two-dimensional MHD models without a guide field, we find that the parallel acceleration stops at some level. This saturation effect is, however, removed in the presence of an out-of-plane guide field or in three-dimensional models. Therefore, we stress the importance of the guide field and fully three-dimensional studies for a complete understanding of the process of particle acceleration in astrophysical reconnection environments.
Resumo:
Particle conservation lattice-gas models with infinitely many absorbing states are studied on a one-dimensional lattice. As one increases the particle density, they exhibit a phase transition from an absorbing to an active phase. The models are solved exactly by the use of the transfer matrix technique from which the critical behavior was obtained. We have found that the exponent related to the order parameter, the density of active sites, is 1 for all studied models except one of them with exponent 2.
Resumo:
We show how to set up a constant particle ensemble for the steady state of nonequilibrium lattice-gas systems which originally are defined on a constant rate ensemble. We focus on nonequilibrium systems in which particles are created and annihilated on the sites of a lattice and described by a master equation. We consider also the case in which a quantity other than the number of particle is conserved. The conservative ensembles can be useful in the study of phase transitions and critical phenomena particularly discontinuous phase transitions.
Resumo:
A solution to a version of the Stieltjes moment. problem is presented. Using this solution, we construct a family of coherent states of a charged particle in a uniform magnetic field. We prove that these states form an overcomplete set that is normalized and resolves the unity. By the help of these coherent states we construct the Fock-Bergmann representation related to the particle quantization. This quantization procedure takes into account a circle topology of the classical motion. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
In this work we study, under the Stratonovich definition, the problem of the damped oscillatory massive particle subject to a heterogeneous Poisson noise characterized by a rate of events, lambda(t), and a magnitude, Phi, following an exponential distribution. We tackle the problem by performing exact time averages over the noise in a similar way to previous works analysing the problem of the Brownian particle. From this procedure we obtain the long-term equilibrium distributions of position and velocity as well as analytical asymptotic expressions for the injection and dissipation of energy terms. Considerations on the emergence of stochastic resonance in this type of system are also set forth.
Resumo:
We study random walks systems on Z whose general description follows. At time zero, there is a number N >= 1 of particles at each vertex of N, all being inactive, except for those placed at the vertex one. Each active particle performs a simple random walk on Z and, up to the time it dies, it activates all inactive particles that it meets along its way. An active particle dies at the instant it reaches a certain fixed total of jumps (L >= 1) without activating any particle, so that its lifetime depends strongly on the past of the process. We investigate how the probability of survival of the process depends on L and on the jumping probabilities of the active particles.
Resumo:
We consider a random walks system on Z in which each active particle performs a nearest-neighbor random walk and activates all inactive particles it encounters. The movement of an active particle stops when it reaches a certain number of jumps without activating any particle. We prove that if the process relies on efficient particles (i.e. those particles with a small probability of jumping to the left) being placed strategically on Z, then it might survive, having active particles at any time with positive probability. On the other hand, we may construct a process that dies out eventually almost surely, even if it relies on efficient particles. That is, we discuss what happens if particles are initially placed very far away from each other or if their probability of jumping to the right tends to I but not fast enough.