122 resultados para Parallel application
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
In 2006 the Route load balancing algorithm was proposed and compared to other techniques aiming at optimizing the process allocation in grid environments. This algorithm schedules tasks of parallel applications considering computer neighborhoods (where the distance is defined by the network latency). Route presents good results for large environments, although there are cases where neighbors do not have an enough computational capacity nor communication system capable of serving the application. In those situations the Route migrates tasks until they stabilize in a grid area with enough resources. This migration may take long time what reduces the overall performance. In order to improve such stabilization time, this paper proposes RouteGA (Route with Genetic Algorithm support) which considers historical information on parallel application behavior and also the computer capacities and load to optimize the scheduling. This information is extracted by using monitors and summarized in a knowledge base used to quantify the occupation of tasks. Afterwards, such information is used to parameterize a genetic algorithm responsible for optimizing the task allocation. Results confirm that RouteGA outperforms the load balancing carried out by the original Route, which had previously outperformed others scheduling algorithms from literature.
Resumo:
The main objective of this study was to evaluate the potential application of a lightweight concrete produced with lightweight coarse aggregate made of the water treatment sludge and sawdust (lightweight composite), by determining the thermal properties and possible environmental impact of future residue of this concrete. Two types of concrete were prepared: concrete produced with the lightweight composite dosed with cement/sand/composite/water in a mass ratio of 1:2.5:0.67:0.6 and conventional concrete dosed with cement/sand/crushed stone/water in a mass ratio of 1:4.8:5.8:0.8. The thermal properties were determined by the hot wire parallel technique. The possible environmental impact was measured using the procedures and guidelines of the Brazilian Association of Technical Standards - ABNT. The concrete produced with the lightweight composite presented a 23% lower thermal conductivity than the conventional concrete. The concrete produced with the lightweight composite presented a set of thermal properties suitable for the application of this concrete in non-structural sealing elements. The concentration of aluminum in the solubilized extract of the concrete produced with the lightweight composite was much lower than the concentration of aluminum in the water treatment sludge, confirming the possible reduction of environmental impact of this composite for use in concrete. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
In this paper, artificial neural networks are employed in a novel approach to identify harmonic components of single-phase nonlinear load currents, whose amplitude and phase angle are subject to unpredictable changes, even in steady-state. The first six harmonic current components are identified through the variation analysis of waveform characteristics. The effectiveness of this method is tested by applying it to the model of a single-phase active power filter, dedicated to the selective compensation of harmonic current drained by an AC controller. Simulation and experimental results are presented to validate the proposed approach. (C) 2010 Elsevier B. V. All rights reserved.
Resumo:
This paper proposes a parallel hardware architecture for image feature detection based on the Scale Invariant Feature Transform algorithm and applied to the Simultaneous Localization And Mapping problem. The work also proposes specific hardware optimizations considered fundamental to embed such a robotic control system on-a-chip. The proposed architecture is completely stand-alone; it reads the input data directly from a CMOS image sensor and provides the results via a field-programmable gate array coupled to an embedded processor. The results may either be used directly in an on-chip application or accessed through an Ethernet connection. The system is able to detect features up to 30 frames per second (320 x 240 pixels) and has accuracy similar to a PC-based implementation. The achieved system performance is at least one order of magnitude better than a PC-based solution, a result achieved by investigating the impact of several hardware-orientated optimizations oil performance, area and accuracy.
Resumo:
In the present study, we propose a theoretical graph procedure to investigate multiple pathways in brain functional networks. By taking into account all the possible paths consisting of h links between the nodes pairs of the network, we measured the global network redundancy R (h) as the number of parallel paths and the global network permeability P (h) as the probability to get connected. We used this procedure to investigate the structural and dynamical changes in the cortical networks estimated from a dataset of high-resolution EEG signals in a group of spinal cord injured (SCI) patients during the attempt of foot movement. In the light of a statistical contrast with a healthy population, the permeability index P (h) of the SCI networks increased significantly (P < 0.01) in the Theta frequency band (3-6 Hz) for distances h ranging from 2 to 4. On the contrary, no significant differences were found between the two populations for the redundancy index R (h) . The most significant changes in the brain functional network of SCI patients occurred mainly in the lower spectral contents. These changes were related to an improved propagation of communication between the closest cortical areas rather than to a different level of redundancy. This evidence strengthens the hypothesis of the need for a higher functional interaction among the closest ROIs as a mechanism to compensate the lack of feedback from the peripheral nerves to the sensomotor areas.
Resumo:
The InteGrade project is a multi-university effort to build a novel grid computing middleware based on the opportunistic use of resources belonging to user workstations. The InteGrade middleware currently enables the execution of sequential, bag-of-tasks, and parallel applications that follow the BSP or the MPI programming models. This article presents the lessons learned over the last five years of the InteGrade development and describes the solutions achieved concerning the support for robust application execution. The contributions cover the related fields of application scheduling, execution management, and fault tolerance. We present our solutions, describing their implementation principles and evaluation through the analysis of several experimental results. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
The South American fur seal (Arctocephalus australis) is an amphibious marine mammal distributed along the Atlantic and Pacific coasts of South America. The species is well adjusted to different habitats due to the morphology of its fin-like members and due to some adaptations in their integumentary system. Immunohistochemical studies are very important to evaluate the mechanisms of skin adaptation due the differential expression of the antigens present in the tissue depending of the region of the body surface. However, its strongly pigmented (melanin) epidermis prevents the visualization of the immuno-histochemical chromogens markers. In this study a melanin bleaching method was developed aimed to allow the visualization of the chromogens without interfering in the antigen-antibody affinity for immunohistochemistry. The analysis of PCNA (proliferating cell nuclear antigen) index in the epidermis of A. australis by immunohistochemistry with diaminobenzidine (DAB) as chromogen was used to test the method. The bleaching of the melanin allowed to obtain the cell proliferation index in epidermis and to avoid false positive results without affecting the immunohistochemical results.
Resumo:
A simple and low cost method to determine volatile contaminants in post-consumer recycled PET flakes was developed and validated by Headspace Dynamic Concentration and Gas Chromatography-Flame Ionization Detection (HDC-GC-FID). The analytical parameters evaluated by using surrogates include: correlation coefficient, detection limit, quantification limit, accuracy, intra-assay precision, and inter-assay precision. In order to compare the efficiency of the proposed method to recognized automated techniques, post-consumer PET packaging samples collected in Brazil were used. GC-MS was used to confirm the identity of the substances identified in the PET packaging. Some of the identified contaminants were estimated in the post-consumer material at concentrations higher than 220 ng.g-1. The findings in this work corroborate data available in the scientific literature pointing out the suitability of the proposed analytical method.
Resumo:
Cross-amplification was tested and variability in microsatellite primers (designed for Neotropical parrots) compared, in five macaw species, viz., three endangered blue macaws (Cyanopsitta spixii [extinct in the wild], Anodorhynchus leari [endangered] and Anodorhynchus hyacinthinus [vulnerable]), and two unthreatened red macaws (Ara chloropterus and Ara macao). Among the primers tested, 84.6% successfully amplified products in C. spixii, 83.3% in A. leari, 76.4% in A. hyacinthinus, 78.6% in A. chloropterus and 71.4% in A. macao. The mean expected heterozygosity estimated for each species, and based on loci analyzed in all the five, ranged from 0.33 (A. hyacinthinus) to 0.85 (A. macao). As expected, the results revealed lower levels of genetic variability in threatened macaw species than in unthreatened. The low combined probability of genetic identity and the moderate to high potential for paternity exclusion, indicate the utility of the microsatellite loci set selected for each macaw species in kinship and population studies, thus constituting an aid in planning in-situ and ex-situ conservation.
Resumo:
The aim of this study was to optimize a PCR assay that amplifies an 843 pb fragment from the p28 gene of Ehrlichia canis and compare it with two other PCR methods used to amplify portions of the 16S rRNA and dsb genes of Ehrlichia. Blood samples were collected from dogs suspected of having a positive diagnosis for canine ehrlichiosis. Amplification of the p28 gene by PCR produced an 843-bp fragment and this assay could detect DNA from one gene copy among 1 billion cells. All positive samples detected by the p28-based PCR were also positive by the 16S rRNA nested-PCR and also by the dsb-based PCR. Among the p28-based PCR negative samples, 55.3% were co-negatives, but 27.6% were positive in 16S rRNA and dsb based PCR assays. The p28-based PCR seems to be a useful test for the molecular detection of E. canis, however improvements in this PCR sensitivity are desired, so that it can become an important alternative in the diagnosis of canine ehrlichiosis.
Resumo:
Three welding procedures used to rebuild worn shafts in sugar cane mills were analysed: two submerged arc welding processes and one flux cored arc welding (FCAW) process. Sliding wear tests were in accordance with ASTM G 77 standard, using rings of welding material, blocks of bronze SAE 67, and oil as lubricant. The worn surfaces of rings and blocks were analysed by scanning electron microscopy to determine the wear mechanisms. High contact pressure, high operating temperature, and low relative speed were applied in sliding wear tests to match the conditions in sugar cane mills. Transferred material and evidence of adhesive junctions were detected. Additionally, hardened fragments produced abrasive grooves on the worn surfaces. The welding deposits that presented strong adhesion on the worn surface showed higher mass loss than the materials that presented more abrasive characteristics. Plastic mechanical properties were measured and related to the mass loss. The tested materials presented similar hardness but different yield stress and hardening coefficient. A relationship between wear, strain hardening coefficient, and yield stress was found. The welding deposit that presented the highest hardening coefficient showed the highest mass loss, with evidence of severe adhesion on the worn surface.
Resumo:
Background: Microarray techniques have become an important tool to the investigation of genetic relationships and the assignment of different phenotypes. Since microarrays are still very expensive, most of the experiments are performed with small samples. This paper introduces a method to quantify dependency between data series composed of few sample points. The method is used to construct gene co-expression subnetworks of highly significant edges. Results: The results shown here are for an adapted subset of a Saccharomyces cerevisiae gene expression data set with low temporal resolution and poor statistics. The method reveals common transcription factors with a high confidence level and allows the construction of subnetworks with high biological relevance that reveals characteristic features of the processes driving the organism adaptations to specific environmental conditions. Conclusion: Our method allows a reliable and sophisticated analysis of microarray data even under severe constraints. The utilization of systems biology improves the biologists ability to elucidate the mechanisms underlying celular processes and to formulate new hypotheses.
Resumo:
Background: High-throughput molecular approaches for gene expression profiling, such as Serial Analysis of Gene Expression (SAGE), Massively Parallel Signature Sequencing (MPSS) or Sequencing-by-Synthesis (SBS) represent powerful techniques that provide global transcription profiles of different cell types through sequencing of short fragments of transcripts, denominated sequence tags. These techniques have improved our understanding about the relationships between these expression profiles and cellular phenotypes. Despite this, more reliable datasets are still necessary. In this work, we present a web-based tool named S3T: Score System for Sequence Tags, to index sequenced tags in accordance with their reliability. This is made through a series of evaluations based on a defined rule set. S3T allows the identification/selection of tags, considered more reliable for further gene expression analysis. Results: This methodology was applied to a public SAGE dataset. In order to compare data before and after filtering, a hierarchical clustering analysis was performed in samples from the same type of tissue, in distinct biological conditions, using these two datasets. Our results provide evidences suggesting that it is possible to find more congruous clusters after using S3T scoring system. Conclusion: These results substantiate the proposed application to generate more reliable data. This is a significant contribution for determination of global gene expression profiles. The library analysis with S3T is freely available at http://gdm.fmrp.usp.br/s3t/.S3T source code and datasets can also be downloaded from the aforementioned website.
Resumo:
Objective: This in vitro study aimed to analyze the influence of neodymium-doped yttrium aluminum garnet (Nd:YAG) laser irradiation on the efficacy of titanium tetrafluoride (TiF(4)) and sodium fluoride (NaF) varnishes and solutions to protect enamel against erosion. Background data: The effect of Nd:YAG laser irradiation on NaF and AmF was analyzed; however, there is no available data on the interaction between Nd:YAG laser irradiation and TiF(4). Methods: Bovine enamel specimens were pre-treated with NaF varnish, TiF(4) varnish, NaF solution, TiF(4) solution, placebo varnish, Nd:YAG (84.9 J/cm(2)), Nd:YAG prior to or through NaF varnish, Nd:YAG prior to or through TiF(4) varnish, Nd:YAG prior to or through NaF solution, Nd:YAG prior to or through TiF(4) solution, and Nd:YAG prior to or through placebo varnish. Controls remained untreated. Ten specimens in each group were then subjected to an erosive demineralization (Sprite Zero, 4x90 s/day) and remineralization (artificial saliva, between the erosive cycles) cycling for 5 days. Enamel loss was measured profilometrically (mu m). Additionally, treated but non-eroded specimens were additionally analyzed by scanning electron microscope (SEM) (each group n-2). The data were statistically analyzed by ANOVA and Tukey's post-hoc test (p < 0.05). Results: Only TiF(4) varnish (1.8 +/- 0.6 mu m), laser prior to TiF(4) varnish (1.7 +/- 0.3 mu m) and laser prior to TiF(4) solution (1.4 +/- 0.3 mu m) significantly reduced enamel erosion compared to the control (4.1 +/- 0.6 mu m). SEM pictures showed that specimens treated with TiF(4) varnish presented a surface coating. Conclusions: Nd:YAG laser irradiation was not effective against enamel erosion and it did not have any influence on the efficacy of F, except for TiF(4) solution. On the other hand, TiF(4) varnish protected against enamel erosion, without the influence of laser irradiation.
Resumo:
Objective: Previous investigations have demonstrated improved enamel demineralization resistance after laser irradiation. Due to the possibility of a synergistic effect between laser and fluoride, this study investigated the effect of fluoridated agents and Nd:YAG irradiation separately and in combination on enamel resistance to erosion. Methods: One hundred bovine enamel blocks were randomly divided into 10 groups: G1, untreated (control); G2, acidic phosphate fluoride (APF) (1.23% F) for 4 min; G3, fluoride varnish for 6 h (NaF, 2.26%); G4, 0.5 W Nd: YAG laser (250 mm pulse width, 10 Hz, 35 J/cm(2), with uniform velocity for 30 sec in each application); G5, 0.75 W Nd:YAG laser (52.5 J/cm(2)); G6, 1.0 W Nd:YAG laser (70 J/cm(2)); G7, APF + 0.75 W Nd:YAG laser; G8, 0.75 W Nd:YAG laser + APF; G9, fluoride varnish + 0.75 W Nd:YAG laser; and G10, 0.75 W Nd:YAG laser + fluoride varnish. During 10 d the erosive cycle was conducted by immersion of the blocks in Sprite light for 1 min, followed by immersion in artificial saliva for 59 min. This procedure was consecutively repeated four times per day. In each day, during the remaining 20 h, the blocks were maintained in artificial saliva. The wear was evaluated by profilometry (days 5 and 10). Data were tested by two-way ANOVA and Bonferroni's tests (p < 0.05). Results: The mean wear at days 5 and 10 was, respectively: G1, 1.83 and 2.67 mu m; G2, 1.04 and 2.60 mu m; G3, 1.03 and 2.48 mu m; G4, 1.13 and 2.47 mu m; G5, 1.07 and 2.44 mu m; G6, 1.0 and 2.35 mu m; G7, 0.75 and 2.27 mu m; G8, 0.80 and 2.12 mu m; G9, 0.76 and 2.47 mu m; and G10, 1.09 and 2.46 mu m. At day 5, all the experimental groups presented significant lesser wear when compared to control group. However, at 10 d, only G7 and G8 were still different from control. Conclusions: The association between APF application and laser irradiation seems to be an alternative preventive measure against dental erosion.