3 resultados para Paragenesis.

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pseudosections, geothermobarometric estimates and careful petrographic observations of gneissic migmatites and granulites from Neoproterozoic central Ribeira Fold Belt (SE Brazil) were performed in order to quantify the metamorphic P-T conditions during prograde and retrograde evolution of the Brasiliano Orogeny. Results establish a prograde metamorphic trajectory from amphibolite facies conditions to metamorphic peak (T = 850 +/- 50 A degrees C; P = 8 +/- 1 kbar) that promoted widespread dehydrationmelting of 30 to 40% of the gneisses and high-grade granitization. After the metamorphic peak, migmatites evolved with cooling and decompression to T a parts per thousand 500 A degrees C and P a parts per thousand 5 kbar coupled with aH2O increase, replacing the high-grade paragenesis plagioclase-quartz-K-feldspar-garnet by quartz-biotite-sillimanite-(muscovite). Cordierite absence, microtextural observations and P-T results constrain the migmatite metamorphic evolution in the pseudosections as a clockwise P-T path with retrograde cooling and decompression. High-temperature conditions further dehydrated the lower crust with biotite and amphibole-dehydration melting and granulite formation coupled with 10% melt generation. Granulites can thus be envisaged as middle to lower crust dehydrated restites. Granulites were slowly (nearly isobarically) cooled, followed by late exhumation/retrograde rapid decompression and cooling, reflecting a two step P-T path. This retrograde evolution, coupled with water influx, chemically reequilibrated the rocks from granulite to amphibolite/greenschist facies, promoting the replacement of the plagioclase-quartz-garnet-hypersthene peak assemblage by quartz-biotite- K-feldspar symplectites.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Pinguino deposit, located in the low sulfidation epithermal metallogenetical province of the Deseado Massif, Patagonia, Argentina, represents a distinct deposit type in the region. It evolved through two different mineralization events: an early In-bearing polymetallic event that introduced In, Zn, Pb, Ag, Cd, Au, As, Cu, Sn, W and Bi represented by complex sulfide mineralogy, and a late Ag-Au quartz-rich vein type that crosscut and overprints the early polymetallic mineralization. The indium-bearing polymetallic mineralization developed in three stages: an early Cu-Au-In-As-Sn-W-Bi stage (Ps(1)), a Zn-Pb-Ag-In-Cd-Sb stage (Ps(2)) and a late Zn-In-Cd (Ps(3)). Indium concentrations in the polymetallic veins show a wide range (3.4 to 1,184 ppm In). The highest indium values (up to 1,184 ppm) relate to the Ps(2) mineralization stage, and are associated with Fe-rich sphalerites, although significant In enrichment (up to 159 ppm) is also present in the Ps(1) paragenesis associated with Sn-minerals (ferrokesterite and cassiterite). The hydrothermal alteration associated with the polymetallic mineralization is characterized by advanced argillic alteration within the immediate vein zone, and sericitic alteration enveloping the vein zone. Fluid inclusion studies indicate homogenisation temperatures of 308.2-327A degrees C for Ps(1) and 255-312.4A degrees C for Ps(2), and low to moderate salinities (2 to 5 eq.wt.% NaCl and 4 to 9 eq.wt.% NaCl, respectively). delta(34)S values of sulfide minerals (+0.76aEuro degrees to +3.61aEuro degrees) indicate a possible magmatic source for the sulfur in the polymetallic mineralization while Pb isotope ratios for the sulfides and magmatic rocks ((206)Pb/(204)Pb, (207)Pb/(204)Pb and (208)Pb/(204)Pb ratios of 17.379 to 18.502; 15.588 to 15.730 and 38.234 to 38.756, respectively) are consistent with the possibility that the Pb reservoirs for both had the same crustal source. Spatial relationships, hydrothermal alteration styles, S and Pb isotopic data suggest a probable genetic relation between the polymetallic mineralization and dioritic intrusions that could have been the source of metals and hydrothermal fluids. Mineralization paragenesis, alteration mineralogy, geochemical signatures, fluid inclusion data and isotopic data, confirm that the In-bearing polymetallic mineralization from Pinguino deposit is a distinct type, in comparison with the well-known epithermal low sulfidation mineralization from the Deseado Massif.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dating granulites has always been of great interest because they represent one of the most extreme settings of an orogen. Owing to the resilience of zircon, even in such severe environments, the link between P-T conditions and geological time is possible. However, a challenge to geochronologists is to define whether the growth of new zircon is related to pre- or post-P-T peak conditions and which processes might affect the (re) crystallization. In this context, the Anapolis-Itaucu Complex, a high-grade complex in central Brazil with ultrahigh temperature (UHT) granulites, may provide valuable information within this topic. The Anapolis-Itaucu Complex (AIC) includes ortho- and paragranulites, locally presenting UHT mineral assemblages, with igneous zircon ages varying between 760 and 650 Ma and metamorphic overgrowths dated at around 650-640 Ma. Also common in the Anapolis-Itaucu Complex are layered mafic-ultramafic complexes metamorphosed under high-grade conditions. This article presents the first geological and geochronological constraints of three of these layered complexes within the AIC, the Damolandia, Taquaral and Goianira-Trindade complexes. U-Pb (LA-MC-ICPMS, SHRIMP and ID-TIMS) zircon analyses reveal a spread of concordant ages spanning within an age interval of similar to 80 Ma with an ""upper"" intercept age of similar to 670 Ma. Under cathodoluminescence imaging, these crystals show partially preserved primary sector zoning, as well as internal textures typical of alteration during high-grade metamorphism, such as inward-moving boundaries. Zircon grains reveal homogeneous initial (176)Hf/(177)Hf values in distinct crystal-scale domains in all samples. Moreover. Hf isotopic ratios show correlation neither with U-Pb ages nor with Th/U ratios, suggesting that zircon grains crystallized during a single growth event. It is suggested, therefore, that the observed spread of concordant U-Pb ages may be related to a memory effect due to coupled dissolution-reprecipitation process during high grade metamorphism. Therefore, understanding the emplacement and metamorphism of this voluminous mafic magmatism is crucial as it may represent an additional heat source for the development of the ultrahigh temperature paragenesis recorded in the paragranulites. (C) 2010 Elsevier B.V. All rights reserved.