5 resultados para Pahs
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
The exhaust emission of the polycyclic aromatic hydrocarbons (PAHs) considered toxic to human health were investigated on two spark ignition light duty vehicles, one being gasohol (Gasohol, in Brazil, is the generic denomination for mixtures of pure gasoline plus 20-25% of anhydrous ethyl alcohol fuel (AEAF).)-fuelled and the other a flexible-fuel vehicle fuelled with hydrated ethanol. The influence of fuel type and quality, aged lubricant oil type and use of fuel additives on the formation of these compounds was tested using standardized tests identical to US FTP-75 cycle. PAH sampling and chemical analysis followed the basic recommendations of method TO-13 (United States. Environmental Protection Agency, 1999. Compendium Method TO-13A - Determination of polycyclic Aromatic hydrocarbons (PAH) in Ambient Air Using Gas Chromatography/Mass Spectrometry (CG/MS). Center for environmental research information, Cincinnati, p. 78), with the necessary modification for this particular application. Results showed that the total PAH emission factor varied from 41.9 mu g km(-1) to 612 mu g km(-1) in the gasohol vehicle, and from 11.7 mu g km(-1) to 27.4 mu g km(-1) in the ethanol-fuelled vehicle, a significant difference in favor of the ethanol vehicle. Generally, emission of light molecular weight PAHs was predominant, while high molecular weights PAHs were not detected. In terms of benzo(a)pyrene toxicity equivalence, emission factors varied from 0.00984 mu g TEQ km(-1) to 4.61 mu g TEQ km(-1) for the gasohol vehicle and from 0.0117 mu g TEQ km(-1) to 0.0218 mu g TEQ km(-1) in the ethanol vehicle. For the gasohol vehicle, results showed that the use of fuel additive causes a significant increase in the emission of naphthalene and phenanthrene at a confidence level of 90% or higher; the use of rubber solvent on gasohol showed a reduction in the emission of naphthalene and phenanthrene at the same confidence level; the use of synthetic oil instead of mineral oil also contributed significantly to a decrease in the emission of naphthalene and fluorene. In relation to the ethanol vehicle, the same factors were tested and showed no statistically significant influence on PAH emission. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Geophysics has been shown to be effective in identifying areas contaminated by waste disposal, contributing to the greater efficiency of soundings programs and the installation of monitoring wells. In the study area, four trenches were constructed with a total volume of about 25,000 m(3). They were almost totally filled with re-refined lubricating oil waste for approximately 25 years. No protection liners were used in the bottoms and laterals of the disposal trenches. The purpose of this work is to evaluate the potential of the resistivity and ground penetrating radar (GPR) methods in characterizing the contamination of this lubricant oil waste disposal area in Ribeiro Preto, SP, situated on the geological domain of the basalt spills of the Serra Geral Formation and the sandstones of the Botucatu Formation. Geophysical results were shown in 2D profiles. The geophysical methods used enabled the identification of geophysical anomalies, which characterized the contamination produced by the trenches filled with lubricant oil waste. Conductive anomalies (smaller than 185 Omega m) immediately below the trenches suggest the action of bacteria in the hydrocarbons, as has been observed in several sites contaminated by hydrocarbons in previously reported cases in the literature. It was also possible to define the geometry of the trenches, as evidenced by the GPR method. Direct sampling (chemical analysis of the soil and the water in the monitoring well) confirmed the contamination. In the soil analysis, low concentrations of several polycyclic aromatic hydrocarbons (PAHs) were found, mainly naphthalene and phenanthrene. In the water samples, an analysis verified contamination of the groundwater by lead (Pb). The geophysical methods used in the investigation provided an excellent tool for environmental characterization in this study of a lubricant oil waste disposal area, and could be applied in the study of similar areas.
Resumo:
In the present study Tradescantia pallida micronucleus (Trad-MCN) bioassay was used to assess the genotoxicity of particulate matter with a mass median aerodynamic diameter less than 10 pm (PM(10)) in Tangara da Serra (MT), a Brazilian Amazon region that suffers the impact of biomass burning. The levels of PM (coarse and fine size fractions) and black carbon (BC) collected were also measured. Furthermore, the alkanes and polycyclic aromatic hydrocarbons (PAHs) were identified and quantified in the samples taken during the burning period by gas chromatography with flame ionization detection (GC-FID). The PM and BC results for both fractions indicate a strong correlation (p < 0.001). The analysis of alkanes indicates an anthropic influence. Retene was the most abundant PAH found, an indicator of biomass burning, and 12 other PAHs considered to be potentially mutagenic and/or carcinogenic were identified in this sample. The Trad-MCN bioassay showed a significant increase in micronucleus frequency during the period of most intense burning, possibly related to the mutagenic PAHs that were found in such extracts. This study demonstrated that Trad-MCN was sensitive and efficient in evaluating the genotoxicity of organic compounds from biomass burning. It further emphasizes the importance of performing chemical analysis, because changes in chemical composition generally have a negative effect on many living organisms. This bioassay (ex situ), using T. pallida with chemical analysis, is thus recommended for characterizing the genotoxicity of air pollution. Crown Copyright (C) 2011 Published by Elsevier Inc. All rights reserved.
Resumo:
Here we present the catalytic hydrogenation of polycyclic aromatic hydrocarbons (PAHs) to less toxic mixtures of saturated and partial unsaturated polycyclic hydrocarbons under mild reaction conditions using a magnetically recoverable rhodium catalyst and molecular hydrogen as the exclusive H source. The catalyst is easily recovered after each reaction by placing a permanent magnet on the reactor wall and it can be reused in successive runs without any significant loss of catalytic activity. As an example, anthracene was totally converted into the saturated polycyclic hydrocarbon form (ca. 60%) and the partially hydrogenated form, 1,2,3,4,5,6,7,8-octahydroanthracene (ca. 40%). The catalyst operates in a broad range of temperature and H(2) pressure in both organic and aqueous/organic solutions of anthracene and it also exhibits significant activity at low substrate concentrations (20 ppm). This can be an efficient recycling process for hydrogenation of PAHs present in contaminated fluid waste streams. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
This study was conducted at three sites of different characteristics in Sao Paulo State Sao Paulo (SPA), Piracicaba (PRB) and Mate Atlantica Forest (MAT) PM(10), n-alkanes. pristane and phytane, PAHs, water-soluble ions and biomass burning tracers like levoglucosan and retene, were determined in quartz fiber filters. Samplings occurred on May 8th to August 8th, 2007 at the MAT site; on August 15th to 29th in 2007 and November 10th to 29th in 2008 at the PRB site and, March 13th to April 4th in 2007 and August 7th to 29th in 2008 at the SPA site Aliphatic compounds emitted biogenically were less abundant at the urban sites than at the forest site, and its distribution showed the influence of tropical vascular plants Air mass transport front biomass burning regions is likely to impact the sites with specific molecular markers The concentrations of all species were variable and dependent of seasonal changes In the most dry and polluted seasons, n-alkane and canon total concentrations were similar between the megacity and the biomass burning site PAHs and inorganic ion abundances were higher at Sao Paulo than Piracicaba, yet, the site influenced by biomass burning seems lobe the most impacted by the organic anion abundance in the atmosphere Pristane and phytane confirm the contamination by petroleum residues at urban sites, at the MAT site, biological activity and long range transport of pollutants might influence the levels of pristane (C) 2010 Elsevier B V All rights reserved